A glucosyltransferase gene UDP-flavonoid 3-O-glucosyl transferase was isolated from tea plant [Camellia sinensis (L.) O. Kuntze] and named CsUFGT. CsUFGT has 1526bp full length with open reading frame of 1380bp which encodes 459 amino acids. The corresponding protein CsUFGT, with predicted molecular mass 49.486kDa and predicted isoelectric point 5.96, shares 59% identity and 75% similarity with UFGT(P51094.2) in Vitis vinifer. CsUFGT includes a PSPG signal motif of typical plant glucosyltransferase. qRT-PCR analysis showed that the gene expressed in all tissues of tea plant [Camellia sinensis (L.) O. Kuntze], and had high expression in the fourth leaf and low expression level in root and stem.
WANG Xiao-fan
,
TIAN Yan-wei
,
WANG Yun-sheng
,
GAO Li-ping
,
XIA Tao
. The Gene Cloning and Expression Analysis of UFGT in Tea Plant [Camellia sinensis (L.) O. Kuntze][J]. Journal of Tea Science, 2012
, 32(5)
: 411
-418
.
DOI: 10.13305/j.cnki.jts.2012.05.010
[1] Winkel-Shirley B.Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology[J]. Plant Physiology, 2001, 126(2): 485-493.
[2] Jones P, Vogt T.Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant conrtrollers[J]. Planta, 2001, 213: 164-174.
[3] Lim E K, Bowles D.A class of plant glycosyltransferases involved in cellular homeostasis[J]. The EMBO journal, 2004, 23: 2915-2922.
[4] Li Y, Baldauf S, Lim E K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2001, 276(6): 4338-4343.
[5] Boss P K, Davies C, Robinson S P.Analysis of the Expression of Anthocyanin Pathway Genes in Developing Vitis vinifera L. cv. Shiraz Grape Berries and the Implications for Pathway Regulation[J]. Plant Physiology, 1996, 111(4): 1059-1066.
[6] Hou B K, Lim E K, Higgins G S, et al. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2004, 279(46): 47822-47832.
[7] Ford C M, Boss P K, Hoj P B.Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J]. The Journal of Biological Chemistry, 1998, 273(15): 9224-9233.
[8] Gerats A G M, Wallroth M, Donker-Koopman W,et al. The genetic control of the enzyme UDP-glucose: 3-O-flavonoid-glucosyltransferase in flowers of Petunia hybrida[J]. T Theoretical and Applied Genetics, 1983, 65: 349-352.
[9] 冯立娟, 苑兆和, 尹燕雷, 等. 美国红枫变色期二氢黄酮醇还原酶和类黄酮糖基转移酶变化研究[J]. 山东林业科技, 2008, 38(6): 1-3.
[10] Hu C, Gong Y, Jin S, et al. Molecular analysis of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene from purple potato (Solanum tuberosum)[J]. Molecular Biology Reports, 2011, 38(1): 561-567.
[11] Poudel P, Goto-Yamamoto N, Mochioka R, et al. Expression analysis of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene in an interspecific hybrid grape between Vitis ficifolia var. ganebu and Vitis vinifera cv. Muscat of Alexandria[J]. Plant Biotechnology Reports, 2008, 2(4): 233-238.
[12] Pang Y Z, Peel G J, Sharma S B, et al. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14210-14215.
[13] 李俊才, 李天忠, 王志刚, 等.“红巴梨”果皮UFGT基因的克隆及表达分析[J]. 西北植物学报, 2010, 30(1): 30-34.
[14] 郭书巧, 杨郁文, 倪万潮. 甜叶菊葡糖基转移酶基因UGT76G2的克隆及生物信息学分析[J]. 基因组学与应用生物学,. 2009, 28(3): 422-428.
[15] Heid C A, Steven J, Livak K J, et al. Real time quantitative PCR[J]. Genome Research, 1996, 6: 986-994.
[16] Paquette S, Moller B L, Bak S.On the origin of family 1 plant glycosyltransferases[J]. Phytochemistry, 2003, 62(3): 399-413.
[17] Offen W, Martinez-Fleites C, Yang M, et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification[J]. EMBO Journal, 2006, 25(6): 1396-1405.
[18] Osmani S A, Bak S, Møller B L.Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling[J]. Phytochemistry, 2009, 70(3): 325-347.
[19] Lim E K, Doucet C J, Li Y, et al. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates[J]. Journal of Biological Chemistry, 2002, 277(1): 586-592.
[20] Vogt T, Jones P.Glycosyltransferases in plant natural product synthesis: characterization of a supergene family[J]. Trends in Plant Science, 2000, 5(9): 380-386.
[21] Walker S, Hu Y N.Remarkable structural similarities between diverse glycosyltransferases[J]. Chemistry & Biology, 2002, 9(12): 1287-1296.
[22] Unligil U M, Rini J M.Glycosyltransferase structure and mechanism[J]. Current Opinion in Structural Biology, 2000, 10(5): 510-517.
[23] Zhang Z, Kochhar S, Grigorov M.Exploring the sequence-structure protein landscape in the glycosyltransferase family[J]. Protein Science, 2003, 12(10): 2291-2302.