Welcome to Journal of Tea Science,Today is

Application of Caco-2 Cell Model in the Research of Tea Bioactive Components

  • XIE Yan-lan ,
  • GUO Hao-wei ,
  • ZHENG Xian-mu ,
  • XU Hai-rong ,
  • Wilfried Andlauer ,
  • Agnieszka Kosińska
Expand
  • 1. Department of Tea Science, Zhejiang University, Hangzhou 310058, China;
    2. Life Technologies Institute, University of Applied Sciences Valais (HES-SO), Sion, CH-1950, Switzerland;

Received date: 2012-07-06

  Revised date: 2012-08-14

  Online published: 2019-09-05

Abstract

Caco-2 cell monolayer possesses the similar morphological and functional properties to the human intestinal epithelial cells, is one of the important in vitro cell models to study nutrients or drugs absorption, transport and metabolism. In recent years the Caco-2 cell model also widely used in the research of tea bioactive components. The absorption and transport mechanisms of catechins, theanine, gallic acid and caffeine, the metabolism of catechins and the pharmacodynamic mechanism of tea bioactive components in Caco-2 cells were reviewed. What’s more, the rapid assessment of tea bioactive components’ absorption features using Caco-2 cell model in order to promote the development of tea-care products and preparations were prospected.

Cite this article

XIE Yan-lan , GUO Hao-wei , ZHENG Xian-mu , XU Hai-rong , Wilfried Andlauer , Agnieszka Kosińska . Application of Caco-2 Cell Model in the Research of Tea Bioactive Components[J]. Journal of Tea Science, 2012 , 32(6) : 471 -479 . DOI: 10.13305/j.cnki.jts.2012.06.003

References

[1] 陈宗懋. 2000年茶业展望[J]. 茶叶科学, 1994, 14(2): 81-88.
[2] 刘本英, 王平盛. 茶多酚生物学活性的研究进展[J]. 中国农学通报, 2005, 29(2): 28-33.
[3] Camargo AEI, Daguer DAE, Barbosa DS.Green tea exerts antioxidant action in vitro and its consumption increases total serum antioxidant potential in normal and dyslipidemic subjects[J]. Nutrition Research, 2006, 26(12): 626-631.
[4] Higdon JV, Frei B.Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition[J]. 2003, 43(1): 89-143.
[5] Erba D, Riso P, Bordoni A, et al. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans[J]. The Journal of Nutritional Biochemistry, 2005, 16(3): 144-149.
[6] Siddiqui IA, Asim M, Hafeez BB, et al. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer[J]. The FASEB Journal, 2011, 25(4): 1198-1207.
[7] 查龙应, 许梓荣, 王敏奇. Caco-2细胞模型及其在营养素小肠吸收机理研究中的应用[J]. 动物营养学报, 2006, 18(3): 215-222.
[8] Shimizu M.Modulation of intestinal functions by food substances[J]. Nahrung-Food, 1999, 43(3): 154-158.
[9] Langerholc T, Maragkoudakis PA, Wollgast J, et al. Novel and established intestinal cell line models - An indispensable tool in food science and nutrition[J]. Trends in Food Science & Technology, 2011, 22(S1): S11-S20.
[10] van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug absorption[J]. Expert Opinion on Drug Metabolism & Toxicology, 2005, 1(2): 175-185.
[11] Shah P, Jogani V, Bagchi T, et al. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption[J]. Biotechnology Progress, 2006, 22(1): 186-198.
[12] Hubatsch I, Ragnarsson EGE, Artursson P.Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers[J]. Nature Protocols, 2007, 2(9): 2111-2119.
[13] Shimizu M.Interaction between food substances and the intestinal epithelium[J]. Bioscience Biotechnology and Biochemistry, 2010, 74(2): 232-241.
[14] 赵艳红, 贾晓斌, 陈彦, 等. Caco-2细胞模型及其对黄酮类成分作用机制研究进展[J]. 中草药, 2007, 38(6): 938-941.
[15] 陈留记, 杨贤强, 金明向. 茶儿茶素代谢动力学研究进展[J]. 茶叶科学, 2000, 20(1): 11-16.
[16] Artursson P, Palm K, Luthman K.Caco-2 monolayers in experimental and theoretical predictions of drug transport[J]. Advanced Drug Delivery Reviews, 1996, 22(1/2): 67-84.
[17] Chan KY, Zhang L, Zuo Z.Intestinal efflux transport kinetics of green tea catechins in Caco-2 monolayer model[J]. Journal of Pharmacy and Pharmacology, 2007, 59(3): 395-400.
[18] Konishi Y, Kobayashi S, Shimizu M.Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 Cell monolayers[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7296-7302.
[19] Kosińska A, Xie Y, Diering S, et al. Stability of phenolic compounds isolated from cocoa, green tea and strawberries in Hank's balanced salt solution under cell culture conditions[J]. Polish Journal of Food and Nutrition Science, 2012, 62(2): 91-96.
[20] Feng WY.Metabolism of green tea catechins: An overview[J]. Current Drug Metabolism, 2006, 7(7): 755-809.
[21] 顾成波, 袁肖寒, 付玉杰, 等. 绿茶EGCG防癌作用的分子靶点[J]. 茶叶科学, 2010, 30(6): 414-422.
[22] 郭子涛. 表没食子儿茶素没食子酸酯(EGCG)在Caco-2细胞中的摄取、跨膜转运和外排研究[D]. 上海: 华东师范大学, 2011.
[23] Vaidyanathan JB, Walle T.Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2[J]. Pharmaceutical Research, 2001, 18(10): 1420-1425.
[24] Vaidyanathan JB, Walle T.Cellular uptake and efflux of the tea flavonoid (-)-epicatechin-3-gallate in the human intestinal cell line Caco-2[J]. Journal of Pharmacology and Experimental Therapeutics, 2003, 307(2): 745-752.
[25] Zhang L, Zheng Y, Chow MSS, et al. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model[J]. International Journal of Pharmaceutics, 2004, 287(1-2): 1-12.
[26] Zhang L, Chow MSS, Zuo Z.Effect of the co-occurring components from green tea on the intestinal absorption and disposition of green tea polyphenols in Caco-2 monolayer model[J]. Journal of Pharmacy and Pharmacology, 2006, 58(1): 37-44.
[27] Peters CM, Green RJ, Janle EM, et al. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea[J]. Food Research International, 2010,43(1): 95-102.
[28] Xie YL, Kosińska A, Xu H, et al. Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model[J/OL]. Food Research International, 2012. http://dx.doi.org/10.1016/j.foodres.2012.07.063.
[29] Kitaoka S, Hayashi H, Yokogoshi H, et al. Transmural potential changes associated with the in vitro absorption of theanine in the guinea pig intestine[J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(11): 1768-1771.
[30] 吕亚宁. 茶叶中主要特征成分在Caco-2细胞模型中吸收情况的研究[D]. 合肥: 安徽农业大学, 2010.
[31] 李肖玲, 崔岚, 祝徳秋. 没食子酸生物学作用的研究进展[J]. 中国药师, 2007, 7(10): 767-769.
[32] Konishi Y, Kobayashi S, Shimizu M.Transepithelial transport of p-coumaric acid and gallic acid in Caco-2 cell monolayers[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(11): 2317-2324.
[33] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003: 39.
[34] Williamson G, Day AJ, Plumb GW, et al. Human metabolic pathways of dietary flavonoids and cinnamates[J]. Biochemical Society Transactions, 2000, 28(2): 16-22.
[35] Neilson AP, Ferruzzi MG.Influence of formulation and processing on absorption and metabolism of flavan-3-Ols from tea and cocoa[J]. Annual Review of Food Science and Technology, 2011, 2: 125-151.
[36] Vaidyanathan JB, Walle T.Glucuronidation and sulfation of the tea flavonoid (-)-epicatechin by the human and rat enzymes[J]. Drug metabolism and disposition, 2002, 30(8): 897-903.
[37] Johnston K, Sharp P, Clifford M, et al. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells[J]. FEBS Letters, 2005, 579(7): 1653-1657.
[38] Shimizu M, Kobayashi Y, Suzuki M, et al. Regulation of intestinal glucose transport by tea catechins[J]. Biofactors, 2000, 13(1/2/3/4): 61-65.
[39] 张海凤, 董亚琳, 张琰. 没食子酸的α-葡萄糖苷酶抑制作用及降糖机制研究[C]. //中国药学会. 2010年中国药学大会暨第十届中国药师周论文集. 2010: 192-195.
[40] 缪小平, 林东昕. 叶酸与肿瘤[J]. 癌症, 2003, 22(6): 668-671.
[41] 孙居锋, 郭志雄, 潘惠英, 等. 叶酸拮抗剂类药物研究进展[J]. 化学通报, 2006, 69(2): 21.
[42] Navarro-Perán E, Cabezas-Herrera J, Garcia-Canovas F, et al. The antifolate activity of tea catechins[J]. Cancer Research, 2005, 65(6): 2059-2064.
[43] Alemdaroglu NC, Wolffram S, Boissel JP, et al. Inhibition of folic acid uptake by catechins and tea extracts in Caco-2 cells[J]. Planta Medica, 2007, 73(1): 27-32.
[44] Lemos C, Peters GJ, Jansen G, et al. Modulation of folate uptake in cultured human colon adenocarcinoma Caco-2 cells by dietary compounds[J]. European Journal of Nutrition, 2007, 46(6): 329-336.
[45] Navarro-Perán E, Cabezas-Herrera J, Sánchez-del-Campo L, et al. The anti-inflammatory and anti-cancer properties of epigallocatechin-3-gallate are mediated by folate cycle disruption, adenosine release and NF-κB suppression[J]. Inflammation Research, 2008, 57(10): 472-478.
[46] Monteiro R, Calhau C, Martel F, et al. Modulation of MPP+ uptake by tea and some of its components in Caco-2 cells[J]. Naunyn-Schmiedeberg’s Arch Pharmacol, 2005, 372(2): 147-152.
[47] Jodoin J, Demeule M, Béliveau R.Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols[J]. Biochimica et Biophysica Acta, 2002, 1542(1/2/3): 149-159.
[48] Okamura S, Tamura H.Effect of herbal teas on conjugation reactions in a human colon carcinoma cell line, Caco-2[J]. Journal of Health Science, 2004, 50(2): 189-192.
[49] Tamura H, Matsui M.Inhibitory effects of green tea and grape juice on the phenol sulfotransferase activity of mouse intestines and human colon carcinoma cell line, caco-2[J]. Biological & Pharmaceutical Bulletin, 2000, 23(6): 695-699.
[50] Isozaki T, Tamura H.Epigallocatechin gallate (EGCG) inhibits the sulfation of 1-naphthol in a human colon carcinoma cell line, Caco-2[J]. Biological & Pharmaceutical Bulletin, 2001, 24(9): 1076-1078.
[51] Chen ZP, Schell JB, Ho CT, et al. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts[J]. Cancer Letters, 1998, 129(2): 173-179.
[52] Lu J, Ho CT, Ghai G, et al. Differential effects of theaflavin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells[J]. Cancer Research, 2000, 60(22): 6465-6471.
[53] Salucci M, Stivala LA, Maiani G, et al. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2)[J]. British Journal of Cancer, 2002, 86(10): 1645-1651.
[54] Subbaramaiah K, Altorki N, Chung WJ, et al. Inhibition of cyclooxygenase-2 gene expression by p53[J]. Journal of Biological Chemistry, 1999, 274(16): 10911-10915.
[55] Intra J, Kuo SM.Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal Caco-2 cells[J]. Chemico-Biological Interactions, 2007, 169(2): 91-99.
[56] Peng IW, Kuo SM.Flavonoid structure affects the inhibition of lipid peroxidation in Caco-2 intestinal cells at physiological concentrations[J]. The Journal of Nutrition, 2003, 133(7): 2184-2187.
Outlines

/