[1] Yang C S, Hong J.Prevention of chronic diseases by tea: possible mechanisms and human relevance[J]. Annual Review of Nutrition, 2013, 33: 161-181.
[2] 毛清黎, 施兆鹏, 李玲, 等. 茶叶儿茶素保健及药理功能研究新进展[J]. 食品科学, 2007, 28(8): 584-589.
Mao Q L, Shi Z P, Li L, et al.Research advances of health and pharmacological functions of tea catechins[J]. Food Science, 2007, 28(8): 584-589.
[3] 李露, 吕佳倩, 江承佳, 等. 茶多酚对心血管保护作用的研究进展[J]. 食品科学, 2016, 37(19): 283-288.
Li L, Lü J Q, Jiang C J, et al.Advances in research on protective effect of polyphenols in cardiovascular disease[J]. Food Science, 2016, 37(19): 283-288.
[4] 高俊延, 万仁涛. 茶多酚抗动脉粥样硬化研究概况[J]. 中国民族民间药, 2017, 26(23): 54-56.
Gao J Y, Wan R T.Research situation of tea polyphenols anti-atherosclerosis[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2017, 26(23): 54-56.
[5] Collins D R, Tompson A C, Onakpoya I J, et al.Global cardiovascular risk assessment in the primary prevention of cardiovascular disease in adults: systematic review of systematic reviews[J]. BMJ Open. 2017, 7(3): e013650. doi: 10.1136/bmjopen-2016-013650.
[6] 陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告2017》概要[J]. 中国循环杂志, 2018, 33(1): 1-8.
Chen W W, Gao R L, Liu L S, et al.Summary of China cardiovascular disease report 2017[J]. Chinese Circulation Journal, 2018, 33(1): 1-8.
[7] Ueda P, Woodward M, Lu Y, et al.Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys[J]. The Lancet Diabetes & Endocrinology, 2017, 5(3): 196-213.
[8] Lu J, Lu Y, Yang H, et al.Characteristics of high cardiovascular risk in 1.7 million Chinese adults[J]. Annals of Internal Medicine. 2019, 170(5): 298-308.
[9] Welsh P, Grassia G, Botha S, et al.Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect?[J]. British Journal of Pharmacology, 2017, 174(22): 3898-3913.
[10] Libby P.Inflammation in atherosclerosis[J]. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32(9): 2045-2051.
[11] Emini Veseli B, Perrotta P, De Meyer GRA, et al.Animal models of atherosclerosis[J]. European Journal of Pharmacology, 2017, 816: 3-13.
[12] Chistiakov D A, Orekhov A N, Bobryshev Y V, et al.Vascular smooth muscle cell in atherosclerosis[J]. Acta Physiologica, 2015, 214(1): 33-50.
[13] Lim S, Park S.Role of vascular smooth muscle cell in the inflammation of atherosclerosis[J]. BMB Rep, 2014, 47(1): 1-7.
[14] Ashino T, Yamamoto M, Numazawa S.Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury[J]. Scientific Reports, 2016, 6: 26291. doi: 10.1038/srep26291.
[15] Serino A, Salazar G.Protective role of polyphenols against vascular inflammation aging and cardiovascular disease[J]. Nutrients, 2019, 11(1): 53. doi: 10.3390/nu11010053.
[16] 郭盼盼, 冯任南, 陈杨. 饮茶对心血管疾病的保护作用[J]. 卫生研究, 2018, 47(5): 858-861.
[17] Williamson G.The role of polyphenols in modern nutrition[J]. Nutrition Bulletin, 2017, 42(3): 226-235.
[18] Shirakami Y, Sakai H, Kochi T, et al.Catechins and its role in chronic diseases[J]. Advances in Experimental Medicine and Biology, 2016, 929: 67-90.
[19] Pang J, Zhang Z, Zheng T Z, et al.Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis[J]. International Journal of Cardiology, 2016, 202: 967-974.
[20] 王泽穆. 饮食与心血管病风险的Meta分析及绿茶多酚EGCG的抗炎机制实验研究[D]. 南京: 南京医科大学, 2014.
Wang Z M.Dietary intake and risk of cardiovascular disease: a meta-analysis, and the anti-inflammatory effects of green tea polyphenol EGCG in HUVECs [D]. Nanjing: Nanjing Medical University, 2014.
[21] 李雅, 冯翠娜, 刘胜辉, 等. 茶多酚对冠心病合并糖尿病患者sCD146和PAPP-A水平的影响[J]. 福建茶叶, 2016, 38(5): 12-13.
Li Y, Feng C N, Liu S H, et al.Effects of Tea Polyphenols on the level of sCD146 and PAPP-A in the patients with coronary artery disease combined with diabetes mellitus[J]. Tea in Fujian, 2016, 38(5):12-13.
[22] Marina María de Jesús Romero-Prado, Jesús Aarón Curiel-Beltrán, María Viviana Miramontes-Espino, et al. Dietary flavonoids added to pharmacological antihypertensive therapy are effective in improving blood pressure[J]. Basic & Clinical Pharmacology & Toxicology, 2015, 117(1): 57-64.
[23] Nogueira L P, Nogueira Neto J F, Klein M R, et al. Short-term effects of green tea on blood pressure, endothelial function, and metabolic profile in obese prehypertensive women: A crossover randomized clinical trial[J]. Journal of the American College of Nutrition, 2017, 36(2): 108-115.
[24] Bogdanski P, Suliburska J, Szulinska M, et al.Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients[J]. Nutrition Research, 2012, 32(6): 421-427.
[25] Shen C L, Samathanam C, Tatum O L, et al.Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats[J]. Inflammation Research, 2011, 60(7): 665-672.
[26] Li J, Ye L, Wang X, et al.(-)-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells[J]. Journal of Neuroinflammation, 2012, 9(1): 161. doi: 10.1186/1742-2094-9-161.
[27] 殷文晗. 表儿茶素对大鼠脑出血的保护作用及相关机制的研究[D]. 郑州: 郑州大学, 2017.
Yin W H.The protective effect of orally intake of (-)-epicatechin in intracecebral hemorrhage rats and the related mechanisms [D]. Zhengzhou: Zhengzhou University, 2017.
[28] Suzuki J, Isobe M, Morishita R, et al.Tea polyphenols regulate key mediators on inflammatory cardiovascular diseases[J]. Mediators of Inflammation, 2009: 494928. doi: 10.1155/2009/494928.
[29] 章琦. 儿茶素对实验性大鼠心衰模型的保护作用及其初步机制研究[D]. 合肥: 安徽医科大学, 2014.
Zhang Q.Study on protective effects of catchin on exprimental heart failure in rats and its mechanism [D]. Hefei: Anhui Medical University, 2014.
[30] Mahajan N, Dhawan V, Sharma G, et al.Induction of inflammatory gene expression by THP-1 macrophages cultured in normocholesterolaemic hypertensive sera and modulatory effects of green tea polyphenols[J]. Journal of Human Hypertension, 2008, 22(2): 141-143.
[31] Wang D, Gao Q, Zhao G, et al.Protective effect and mechanism of theanine on lipopolysaccharide-induced inflammation and acute liver injury in mice[J]. Journal of Agricultural and Food Chemistry, 2018, 66(29): 7674-7683.
[32] Yamakuchi M, Bao C, Ferlito M, et al.Epigallocatechin gallate inhibits endothelial exocytosis[J]. Biological Chemistry, 2008, 389(7): 935-941.
[33] Hwang Y P, Jin S W, Choi J H, et al.Inhibitory effects of l-theanine on airway inflammation in ovalbumin-induced allergic asthma[J]. Food & Chemical Toxicology, 2017, 99: 162-169.
[34] Wang Q M, Wang H, Li Y F, et al.Inhibition of EMMPRIN and MMP-9 expression by epigallocatechin-3-gallate through 67-kDa laminin receptor in PMA-induced macrophages[J]. Cellular Physiology and Biochemistry, 2016, 39(6): 2308-2319.
[35] 赵兴梅, 范春雷. 儿茶素对小鼠巨噬细胞VCAM-1表达的影响[J]. 中国药理学通报, 2011, 27(3): 443-444.
Zhao X M, Fan C L.Effect of catechin on expression of vascular cell adhesion factor-1 in mouse macrophages[J]. Chinese Pharmacological Bulletin, 2011, 27(3): 443-444.
[36] Liu T, Zhang L, Joo D, et al.NF-κB signaling in inflammation[J]. Signal Transduction and Targeted Therapy, 2017, 2: e17023. doi: 10.1038/sigtrans.2017.23.
[37] Van Der Heiden K, Cuhlmann S, Luong L, et al. Role of nuclear factor κB in cardiovascular health and disease[J]. Clinical Science, 2010, 118(10): 593-605.
[38] Lagha A B, Grenier D.Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages[J]. Cytokine, 2019, 115: 64-75.
[39] 文祎, 蔡淑娴, 黄建安. 茶叶活性成分的抗炎作用及其机制研究进展[J]. 食品安全质量检测学报, 2017, 8(10): 3925-3930.
Wen Y, Cai S X, Huang J A.Research progress in anti-inflammatory effects of tea active ingredients and its mechanisms[J]. Journal of Food Safety & Quality, 2017, 8(10): 3925-3930.
[40] Li J, Sapper T N, Mah E, et al.Green tea extract treatment reduces NF-κB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability[J]. The Journal of Nutritional Biochemistry, 2017, 41: 34-41.
[41] Li J, Sapper T N, Mah E, et al.Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NF-κB pro-inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet[J]. Molecular Nutrition & Food Research, 2016, 60(4): 858-870.
[42] Tipoe G, Leung T M, Hung M W, et al.Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection[J]. Cardiovascular & Hematological Disorders-Drug Targets, 2007, 7(2): 135-144.
[43] Nam S, Smith D M, Dou Q P.Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo[J]. Journal of Biological Chemistry, 2001, 276(16): 13322-13330.
[44] Wang Z M, Gao W, Wang H, et al.Green tea polyphenol epigallocatechin-3-gallate inhibits TNF-α-induced production of monocyte chemoattractant protein-1 in human umbilical vein endothelial cells[J]. Cell Physiology Biochemistry. 2014, 33(5): 1349-1358.
[45] Babu P V, Si H, Liu D.Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NF-κB-mediated mechanism[J]. Molecular Nutrition & Food Research, 2012, 56(9): 1424-1432.
[46] 李海禹, 孟哲, 王琛, 等. 槲皮素对氧化低密度脂蛋白诱导的血管平滑肌细胞炎症反应的影响[J]. 中国合理用药探索, 2018, 15(3): 29-33.
Li H Y, Meng Z, Wang C, et al.Effects of quercetin on inflammatory reactions induced by oxidized low density lipoprotein in vascular smooth muscle cells[J]. Chinese Journal of Rational Drug Use, 2018, 15(3): 29-33.
[47] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.
Wan X C.Tea biochemistry [M]. 3rd. Beijing: China Agricuture Press, 2003.
[48] 李伟. 茶黄素中压色谱制备及对大鼠平滑肌细胞的炎症抑制作用[D]. 合肥: 安徽农业大学, 2016.
Li W.The inflammatory inhition of theaflavin prepare by MPLC in VSMC [D]. Hefei: Anhui Agriculture University, 2016.
[49] 李红月, 邓惠芳, 戴长蓉, 等. 茶黄素对大鼠缺血性脑损伤所致炎症反应的作用[J]. 中国医院药学杂志, 2016, 36(20): 1755-1759.
Li H Y, Deng H F, Dai C R, et al.Effects of theaflavin on inflammation caused by ischemic brain injuries in rats[J]. Chinese Journal of Hospital Pharmacy, 2016, 36(20): 1755-1759.
[50] Wu Y, Jin F, Liu J, et al.Protective effect of theaflavin-3-digallate on lipopolysaccharide-induced inflammation injury in macrophage cells[J]. International Journal of Pharmacology, 2017, 13: 980-989.
[51] Fu G L, Wang H, Cai Y L, et al.Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats[J]. Drug Design, Development and Therapy, 2018, 12: 1609-1619.
[52] Yang Y, Kim S C, Yu T, et al.Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses[J]. Mediators of Inflammation, 2014: 352371. doi: 10.1155/2014/352371.
[53] Ohishi T, Goto S, Monira P, et al.Anti-inflammatory action of green tea[J]. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 2016, 15(2): 74-90.
[54] Won S M, Park Y H, Kim H J, et al.Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway[J]. Experimental & Molecular Medicine, 2006, 38(5): 525-534.
[55] Zheng Y, Song H J, Kim C H, et al.Inhibitory effect of epigallocatechin 3-O-gallate on vascular smooth muscle cell hypertrophy induced by angiotensin Ⅱ[J]. Journal of Cardiovascular Pharmacology, 2004, 43(2): 200-208.
[56] Yang J, Han Y, Sun H, et al.(-)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings[J]. Journal of Agricultural and Food Chemistry, 2011, 59(21): 11483-11490.
[57] 刘洪, 唐旭, 汤志梅, 等. 绿茶多酚对兔主动脉粥样硬化斑块中磷酸化p38MAPK的影响[J]. 天然产物研究与开发, 2017, 29(9): 1568-1572.
Liu H, Tang X, Tang Z M, et al.Effect of green tea polyphenols on phosphorylated p38MAPK in experimental atherosclerosis rabbits[J]. Natural Product Research and Development, 2017, 29(9): 1568-1572.
[58] 王齐明. 绿茶多酚EGCG增强动脉粥样硬化斑块稳定性及其相关机制研究[D]. 南京: 南京医科大学, 2017.
Wang Q M.Green tea polyphenol epigallocachin-3-gallate enhance atherosclerotic plaque stability in high-fat diet fed apolipoprotein e-deficient mice [D]. Nanjing: Nanjing Medical University, 2017.
[59] Kim S J, Li M, Jeong C W, et al.Epigallocatechin-3-gallate, a green tea catechin, protects the heart against regional ischemia-reperfusion injuries through activation of RISK survival pathways in rats[J]. Arch Pharmarcology Research. 2014, 37(8): 1079-1085.
[60] Wu Y, Fujun Jin F, Wang Y, et al.In vitro and in vivo anti-inflammatory effects of theaflavin-3,3'-digallate on lipopolysaccharide- induced inflammation[J]. European Journal of Pharmacology, 2017, 794: 52-60.
[61] Goulopoulou S, Mccarthy C G, Webb R C.Toll-like receptors in the vascular system: sensing the dangers within[J]. Pharmacological Reviews, 2015, 68(1): 142-167.
[62] Kumar V.Toll-like receptors in immunity and inflammatory diseases: Past, present, and future[J]. International Immunopharmacology, 2018, 59: 391-412.
[63] Hong B E, Fujimura Y, Yamada K, et al.TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor[J]. The Journal of Immunology, 2010, 185(1): 33-45.
[64] Byun E B, Mi S Y, Kim J H, et al.Epigallocatechin-3-gallate-mediated Tollip induction through the 67-kDa laminin receptor negatively regulating TLR4 signaling in endothelial cells[J]. Immunobiology, 2014, 219(11): 866-872.
[65] Kobayashi N, Takano M, Hata N, et al.Matrix metalloproteinase-9 as a marker for plaque rupture and a predictor of adverse clinical outcome in patients with acute coronary syndrome: An optical coherence tomography study[J]. Cardiology, 2016, 135(1): 56-65.
[66] Li Y F, Wang H, Fan Y, et al.Epigallocatechin-3-gallate inhibits matrix metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-κDa laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in lipopolysaccharide-induced macrophages[J]. Cell Physiologyl Biochemistry. 2017, 43(3): 926-936.
[67] Pal D, Dasgupta S, Kundu R, et al.Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance[J]. Nature Medicine, 2012, 18(8): 1279-1285.
[68] Kumazoe M, Nakamura Y, Yamashita M, et al.Green tea polyphenol epigallocatechin-3-gallate suppresses toll-like receptor 4 expression via up-regulation of E3 ubiquitin-protein ligase RNF216[J]. Journal of Biological Chemistry, 2017, 292(10): 4077-4088.
[69] Rauch I, Müller, Mathias, Decker T. The regulation of inflammation by interferons and their STATs[J]. JAK-STAT, 2013, 2(1): e23820. doi: 10.4161/jkst.23820.
[70] Ivashkiv L B.IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy[J]. Nature Reviews Immunology, 2018, 18(9): 545-558.
[71] Kishore R, Verma S K.Roles of STATs signaling in cardiovascular diseases[J]. JAK-STAT, 2012, 1(2): 118-124.
[72] 肖鹏. 表没食子儿茶素没食子酸酯对脂多糖诱导的小鼠巨噬细胞炎症相关因子表达的影响[D]. 新乡: 河南师范大学, 2014.
Xiao P.Effects of epigallocatechin-3-gallate on the expression of inflammation-related cytokines in mouse macrophage [D]. Xinxiang: Henan Normal University, 2014.
[73] Singh A K, Fechtner S, Wang D, et al.Epigallocatechin-3-Gallate (EGCG) suppresses systemic inflammation by inhibiting IL-6-induced STAT3 activation in cultured hepatocytes and in liver tissue of Adjuvant-Induced Arthritis (AIA) rats[J]. Arthritis Rheumatology, 2018, 70: 111.
[74] 席进, 葛思堂, 左芦根, 等. 绿茶多酚抑制肠道JAK2/STAT3信号通路保护三硝基苯磺酸诱导的小鼠结肠炎肠黏膜屏障[J]. 细胞与分子免疫学杂志, 2018, 34(3): 237-241.
Xi J, Ge S T, Zuo L G, et al.Protective role of green tea polyphenols in intestinal mucosal barrier function of mice with colitis induced by TNBS through inhibiting JAK2/STAT3 pathway[J]. Chinese Journal of Cellular and Molecular Immunology, 2018, 34(3): 237-241.
[75] 邓颖, 史伟浩, 童进东, 等. EGCG对血小板源性生长因子-BB诱导的大鼠血管平滑肌细胞增殖和迁移的影响[J]. 复旦学报(医学版), 2018, 45(4): 503-508.
Deng Y, Shi W H, Tong J D, et al.Effects of epigallocatechin-3-gallate on the proliferation and migration of vascular smooth muscle cells induced by platelet-derived growth factor BB in rats[J]. Fudan University Journal of Medical Sciences, 2018, 45(4): 503-508.
[76] 石伟林, 徐瑶, 宋如晦, 等. EGCG通过STAT3抑制血管内皮细胞炎性因子表达[J]. 生物技术, 2018, 28(2): 124-129, 135.
Shi W L, Xu Y, Song R H, et al.EGCG inhibits LPS-induced inflammatory cytokines through STAT3 pathway in vascular endothelial cells[J]. Biotechnology, 2018, 28(2): 124-129, 135.
[77] 罗林娜, 杨萍, 黄伟. 花青素对大鼠肝缺血再灌注损伤的作用及其机制[J]. 西安交通大学学报(医学版), 2016, 37(4): 594-598.
Luo L N, Yang P, Huang W.The effect and mechanism of anthocyanin on hepatic ischemia reperfusion injury in rats[J]. Journal of Xi'an Jiaotong University(Medical Sciences) , 2016, 37(4): 594-598.
[78] 俞辰斌, 赵国龙, 于立明, 等. JAK2/STAT3信号通路介导原花青素抗H9C2细胞缺氧/复氧损伤[J]. 生理学报, 2016, 68(5): 568-574.
YU C B, ZHAO G L, Yu L M, et al.Proanthocyanidin protects H9C2 cells against hypoxia/reoxygenation injury via JAK2/STAT3 signaling pathway[J]. Acta Physiologica Sinica, 2016, 68(5): 568-574.
[79] Baeten J T, Lilly B.Notch signaling in vascular smooth muscle cells[J]. Advance Pharmacology, 2016, 78: 351-382.
[80] Li Y, Hiroi Y, Liao J K.Notch signaling as an important mediator of cardiac repair and regeneration after myocardial infarction[J]. Trends in Cardiovascular Medicine, 2010, 20(7): 228-231.
[81] 徐晓嫦, 朱晔, 张慧涛, 等. Notch通路在大鼠肾脏缺血再灌注损伤TLR4介导的炎症反应中的作用[J]. 中国病理生理杂志, 2016, 32(3): 485-491.
Xu X C, Zhu Y, Zhang H T, et al.Role of Notch pathway in Toll-like receptor 4 mediated inflammatory response in renal ischemia reperfusion injury in rats[J]. Chinese Journal of Pathophysiology, 2016, 32(3): 485-491.
[82] Wang T F, Xiang Z M, Wang Y, et al.(-)-Epigallocatechin gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages[J]. Frontiers in Immunology, 2017, 8: 433. doi: 10.3389/fimmu.2017.00433.
[83] Huang Y W, Zhu Q Q, Yang X Y, et al.Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice[J]. The FASEB Journal, 2019, 33(1): 953-964.
[84] Nistri S, Sassoli C, Bani D.Notch signaling in ischemic damage and fibrosis: Evidence and clues from the heart[J]. Frontier Pharmacology, 2017, 8: 187. doi: 10.3389/fphar.2017.00187.
[85] Yang Y, Duan W, Jin Z, et al.New role of Notch-mediated signaling pathway in myocardial ischemic preconditioning[J]. Medical Hypotheses, 2011, 76(3): 427-428.
[86] Ahmed S M, Luo L, Namani A, et al.Nrf2 signaling pathway: Pivotal roles in inflammation[J]. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2017, 1863(2): 585-597.
[87] 李泽龙, 王茂, 鄢东海, 等. Nrf2与心脏衰老的相关研究进展[J]. 西南国防医药, 2019, 29(1): 91-93.
Li Z L, Wang M, Yan D H, et al.Research progress of Nrf2 and heart aging[J]. Medical Journal of National Defending Forces in Southwest China, 2019, 29(1): 91-93.
[88] Kloska D, Kopacz A, Piechota-Polanczyk A, et al.Nrf2 in aging-Focus on the cardiovascular system[J]. Vascular Pharmacology, 2019, 112: 42-53.
[89] 杨涪, 刘旭, 李明春. 表没食子儿茶素没食子酸酯作为Nrf2/ARE信号通路激活剂的研究进展[J]. 中国药理学与毒理学杂志, 2017, 31(8): 832-839.
Yang F, Liu X, Li M C.Epigallocatechin-3-gallate as an activator of Nrf2/ARE signaling pathway: a review[J]. Chinese Journal of Pharmacology and Toxicology, 2017, 31(8): 832-839.
[90] Jiang J, Mo Z C, Yin K, et al.Epigallocatechin-3-gallate prevents TNF-α-induced NF-κB activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macro-phage foam cells[J]. International Journal of Molicular Medecine, 2012, 29(5): 946-956.
[91] Bai Q, Lyu Z, Yang X, et al.Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke[J]. Behavior Brain Research, 2017, 321: 79-86.
[92] Aboonabi A, Singh I.Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2-ARE as an indicator and modulator of redox[J]. Biomedicine & Pharmacotherapy, 2015, 72: 30-36.
[93] Fernándezgutiérrez B, Perrotti P P, Gisbert J P, et al.Cardiovascular disease in immune-mediated inflammatory diseases: A cross-sectional analysis of 6 cohorts[J]. Medicine, 2017, 96(26): e7308. doi: 10.1097/MD.0000000000007308.
[94] 阎羽欣, 彭昊, 陈广洁. EGCG介导的免疫调节及其在自身免疫病模型中的应用[J]. 现代免疫学, 2018, 38(5): 420-424.
Yan Y X, Peng H, Chen G J.Immune regulation mediated by EGCG and its application in autoimmune disease model[J]. Current Immunology, 2018, 38(5): 420-424.
[95] 刘旦旦, 周静, 高峰. NLRP3炎症小体及其与心血管疾病的关系[J]. 世界最新医学信息文摘, 2018, 18(72): 88-89, 91.
Liu D D, Zhou J, Gao F.New development of NLRP3 inflammasome and the connection with cardiovascular diseases[J]. World Latest Medicine Information, 2018, 18(72): 88-89, 91.
[96] Zhou W, Chen C, Chen Z, et al.NLRP3: A novel mediator in cardiovascular disease[J]. J Immunology Research, 2018, 2018: 5702103. doi: 10.1155/2018/5702103.
[97] Gao Z, Han Y, Hu Y, et al.Targeting HO-1 by epigallocatechin-3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways[J]. PLOS One, 2016, 11(2): e0149032. doi: 10.1371/journal.pone.0149032.
[98] Ellis L Z, Liu W, Luo Y, et al.Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion[J]. Biochemistry Biophysics Research Communication, 2011, 414(3): 551-556.
[99] Tsai P Y, Ka S M, Chang JM, et al.Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation[J]. Free Radical Biological Medecine, 2011, 51: 744-754.
[100] 阴海鹏. 多酚类化合物通过抑制NLRP3炎症小体发挥抗炎作用的研究[D]. 济南: 山东大学, 2018.
Yin H P. polyphenols prevents inflammation through inhibition of the NLRP3 inflammasome [D]. Jinan: Shandong University, 2018.
[101] Pan Z, Cui M, Dai G, et al.Protective effect of anthocyanin on neurovascular unit in cerebral ischemia/reperfusion injury in rats[J]. Frontier Neuroscience, 2018, 12: 947. doi: 10.3389/fnins.2018.00947.
[102] Chen J, Zhang J, Xu L, et al.Inhibition of neointimal hyperplasia in the rat carotid artery injury model by a HMGB1 inhibitor[J]. Atherosclerosis, 2012, 224(2): 332-339.
[103] Yang B, Gao P, Wu X, et al.Epigallocatechin-3-gallate attenuates neointimal hyperplasia in a rat model of carotid artery injury by inhibition of high mobility group box 1 expression[J]. Experimental and Therapeutic Medicine, 2017, 14(3): 1975-1982.
[104] Li W, Zhu S, Li J, et al.EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages[J]. Biochemical pharmacology, 2011, 81(9): 1152-1163.
[105] Tang D, Kang R, Xiao W, et al.Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function[J]. American Journal of Respiratory Cell and Molecular Biology, 2009, 41(6): 651-660.