[1] Sakanaka S, Juneja L R, Taniguchi M.Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria[J]. Journal of Bioscience and Bioengineering, 2000, 90(1): 81-85.
[2] Vazquez-Prieto M A, Bettaieb A, Haj F G, et al. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes[J]. Archives of Biochemistry and Biophysics, 2012, 527(2): 113-118.
[3] Friedman M, Mackey B E, Kim H J, et al.Structure activity relationships of tea compounds against human cancer cells[J]. Journal of Agricultural and Food Chemistry, 2007, 55(2): 243-253.
[4] Ahmed N A, Radwan N M, Aboul Ezz H S, et al. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats[J]. Electromagnetic Biology and Medicine, 2017, 36(1): 63-73.
[5] Yang C S, Wang H, Sheridan Z P.Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea[J]. Journal of Food and Drug Analysis, 2018, 26(1): 1-13.
[6] Sodagari H R, Bahramsoltani R, Farzaei M H, et al.Tea polyphenols as natural products for potential future management of HIV infection: an overview[J]. Journal of Natural Remedies, 2016, 16(2): 60-72.
[7] Truong V L, Jeong W S.Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness, 2022, 11(3): 502-511.
[8] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.
Wan X C.Biochemistry of tea [M]. 3rd ed. Beijing: China Agricultural Press, 2003.
[9] Bansal S, Syan N, Mathur P, et al.Pharmacological profile of green tea and its polyphenols: a review[J]. Medicinal Chemistry Research, 2012, 21(11): 3347-3360.
[10] Ohishi T, Goto S, Monira P, et al.Anti-inflammatory action of green tea[J]. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2016, 15(2): 74-90.
[11] Anshu M R, Manjeshwar S B, Santosh K K.Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation[J]. Molecular Cancer Therapeutics, 2005, 4(1): 81-90.
[12] Chyu K Y, Babbidge S M, Zhao X N, et al.Differential effects of green tea: derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice[J]. Circulation, 2004, 109(20): 2448-2453.
[13] Lorenz M, Wessler S, Follmann E, et al.A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation[J]. Journal of Biological Chemistry, 2004, 279(7): 6190-6195.
[14] Gordon N C, Wareham D W.Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia[J]. International Journal of Antimicrobial Agents, 2010, 36(2): 129-131.
[15] 陈宗懋. 茶多酚类化合物抗癌的生物化学和分子生物学基础[J]. 茶叶科学, 2003, 23(2): 83-93.
Chen Z M.Biochemical and molecular biological basis on the anticarcinogenic activity of tea polyphenolic compounds[J]. Journal of Tea Science, 2003, 23(2): 83-93.
[16] Mereles D, Hunstein W.Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises?[J]. International Journal of Molecular Sciences, 2011, 12(9): 5592-5603.
[17] Riehemann K, Schneider S W, Luger T A, et al.Nanomedicine: challenge and perspectives[J]. Angewandte Chemie International Edition, 2009, 48(5): 872-897.
[18] Zhao F F, Shen G Z, Chen C J, et al.Nanoengineering of stimuli-responsive protein-based biomimetic protocells as versatile drug delivery tools[J]. Chemistry A European Journal, 2014, 20(23): 6880-6887.
[19] Jain R K, Stylianopoulos T.Delivering nanomedicine to solid tumors[J]. Nature Reviews Clinical Oncology, 2010, 7(11): 653-664.
[20] Pryshchepa O, Pomastowski P, Buszewski B.Silver nanoparticles: synthesis, investigation techniques, and properties[J]. Advances in Colloid and Interface Science, 2020, 284: 102246. doi:10.1016/j.cis.2020.102246.
[21] Moritz M, Geszke-Moritz M.The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chemical Engineering Journal, 2013, 228: 596-613.
[22] Zhang X C, Zhang Z C, Shu Q M, et al.Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo[J]. Advanced Functional Materials, 2021, 31(14): 2008720. doi: 10.1002/adfm.202008720.
[23] Li W Q, Li W, Wan Y L, Wang L F, et al.Preparation, characterization and releasing property of antibacterial nano-capsules composed of epsilon-PL-EGCG and sodium alginate-chitosan[J]. International Journal of Biological Macromolecules, 2022, 204: 652-660.
[24] Pace D R C C, Liu X L, Sun M, et al. Anticancer activities of -epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells[J]. Journal of Liposome Research, 2013, 23(3): 187-196.
[25] Yin C Y, Cheng L, Zhang X, et al.Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols[J]. Journal of Food Biochemistry, 2020, 44(9): e13380. doi: 10.1111/jfbc.13380.
[26] 刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
Liu Z C, Li Z X, Zhang Y, et al.Interpretation on the report of Global Cancer Statistics 2020[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021, 7(2): 1-13.
[27] 中新网. 中国恶性肿瘤5年生存率已提升至40.5%[J]. 现代医院, 2018, 18(6): 796.
Xinhuanet. The 5-year survival rate of malignant tumors in China has increased to 40.5%[J]. Modern Hospitals, 2018, 18(6): 796.
[28] Moseley V R, Morris J, Knackstedt R W, et al.Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells[J]. Anticancer Research, 2013, 33: 5325-5334.
[29] Qiao Y Y, Cao J Y, Xie L Q, et al.Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells[J]. Archives of Pharmacal Research, 2009, 32(9): 1309-1315.
[30] 祁洁, 徐颖磊, 梁文怡, 等. EGCG纳米载体制备技术及其对EGCG活性影响的研究进展[J]. 茶叶科学, 2017, 37(2): 119-129.
Qi J, Xu Y L, Liang W Y, et al.Progress on the preparation technologies and the active improvement of EGCG nano-carriers[J]. Journal of Tea Science, 2017, 37(2): 119-129.
[31] Lambert J D, Kennett M J, Sang S M, et al.Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice[J]. Food and Chemical Toxicology, 2010, 48(1): 409-416.
[32] Wang X X, Yang L M, Wang J J, et al.A mouse model of subacute liver failure with ascites induced by step-wise increased doses of (-)-epigallocatechin-3-gallate[J]. Scientific Reports, 2019, 9(1): 18102. doi: 10.1038/s41598-019-54691-0.
[33] Vallet-Regí M, Balas F, Arcos D.Mesoporous materials for drug delivery[J]. Angewandte Chemie International Edition, 2007, 46(40): 7548-7558.
[34] Giljohann D A,Seferos D S,Daniel W L, et al.Gold nanoparticles for biology and medicine[J]. Angewandte Chemie International Edition, 2010, 49(19): 3280-3294.
[35] Caminade A M, Majoral J P.Nanomaterials based on phosphorus dendrimers[J]. Accounts of Chemical Research, 2004, 37(6): 341-348.
[36] Ding J, Liang T X Z, Min Q H, et al. "Stealth and fully-laden" drug carriers: self-assembled nanogels encapsulated with epigallocatechin gallate and siRNA for drug-resistant breast cancer therapy[J]. ACS Applied Materials and Interfaces, 2018, 10(12): 9938-9948.
[37] Chung J E, Tan S, Gao S J, et al.Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy[J]. Nature Nanotechnology, 2014, 9(11): 907-912.
[38] Madhulika S, Priyanka B, Sanjay M, et al.PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma[J]. International Journal of Nanomedicine, 2015, 10: 6789-6809.
[39] Zhang H Y, Zeng Y, Zhe S, et al.Functional nanoparticles of tea polyphenols for doxorubicin delivery in cancer treatment[J]. Journal of Materials Chemistry B, 2017, 5(36): 7622-7631.
[40] Cheng T J, Liu J J, Ren J, et al.Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance[J]. Theranostics, 2016, 6(9): 1277-1292.
[41] Chen Z H, Wang C H, Chen J Z, et al.Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols[J]. Journal of the American Chemical Society, 2013, 135(11): 4179-4182.
[42] Rahim M A, Björnmal M, Bertleff-Zieschang N, et al. Multiligand metal-phenolic assembly from green tea infusions[J]. ACS Applied Materials and Interfaces, 2018, 10(9): 7632-7639.
[43] Zhong Q Z, Li S Y, Chen J Q, et al.Oxidation-mediated kinetic strategies for engineering metal-phenolic networks[J]. Angewandte Chemie International Edition, 2019, 58(36): 12563-12568.
[44] Fang J Y, Lee W R, Shen S C, et al.Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas[J]. Journal of Dermatological Science, 2006, 42(2): 101-109.
[45] Gülserenİ, Guri A, Corredig M. Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells[J]. Food Digestion, 2012, 3(1/3): 36-45.
[46] Liang K, Chung J E, Gao S J, et al.Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol): green tea catechin conjugate for cancer therapy[J]. Advanced Materials, 2018, 30(14): e1706963. doi:10.1002/adma.201706963.
[47] Hu B, Yu S J, Shi C, et al.Amyloid-Polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis[J]. ACS Nano, 2020, 14: 2760-2776.
[48] Smith A, Giunta B, Bickford P C, et al.Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease[J]. International Journal of Pharmaceutics, 2010, 389(1/2): 207-212.
[49] Gomes J F P S, Rocha S, Pereira M D C, et al. Lipid/particle assemblies based on maltodextrin-gum arabic core as bio-carriers[J]. Colloids and Surfaces B: Biointerfaces, 2010, 76(2): 449-455.
[50] Bae K H, Tan S, Yamashita A, et al.Hyaluronic acid-green tea catechin micellar nanocomplexes: fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity[J]. Biomaterials, 2017, 148: 41-53.
[51] Hsieh D S, Wang H, Tan S W, et al.The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles[J]. Biomaterials, 2011, 32(30): 7633-7640.
[52] Li K, Xiao G, Richardson J J, et al.Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin[J]. Advanced Science, 2019, 6(5): 1801688. doi: 10.1002/advs.201801688.
[53] Ren Z G, Sun S C, Sun R R, et al.A metal: polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy[J]. Advanced Materials, 2020, 32(6): e1906024. doi:10.1002/adma.201906024.
[54] Yuan X M, He Y, Zhou G G, et al.Target challenging-cancer drug delivery to gastric cancer tissues with a fucose graft epigallocatechin-3-gallate-gold particles nanocomposite approach[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 147-153.
[55] Dai Y L, Yang Z, Cheng S Y, et al.Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles[J]. Advanced Materials, 2018, 30(8): 1704877. doi: 10.1002/adma.201704877.
[56] Zheng D W, Lei Q, Zhu J Y, et al.Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy[J]. Nano Letters, 2016, 17(1): 284-291.
[57] Yi Z, Sun Z, Chen G C, et al.Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy[J]. Journal of Materials Chemistry B, 2018, 6(9): 1373-1386.
[58] Wang D G, Wang T T, Yu H J, et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment [J]. Science Immunology, 2019, 4(37): eaau6584. doi: 10.1126/sciimmunol.
[59] Siddiqui I A, Bharali D J, Nihal M, et al.Excellent anti-proliferative and pro-apoptotic effects of -epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo[J]. Nanomedicine Nanotechnology Biology and Medicine, 2014, 10(8): 1619-1626.
[60] Mintzer M A, Dane E L, O'Toole G A, et al. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases[J]. Molecular Pharmaceutics, 2012, 9(3): 342-354.
[61] 王迎军, 黄雪连, 陈军建, 等. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
Wang Y J, Huang X L, Chen J J, et al.Bacterial infection-microenvironment responsive polymeric materials for the treatment of bacterial infectious diseases: a review[J]. Materials Reports, 2019, 33(1): 5-15.
[62] Ning X H, Lee S, Wang Z R, et al.Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity[J]. Nature Materials, 2011, 10(8): 602-607.
[63] Moore E H.Atypical mycobacterial infectionin the lung: CT appearance[J]. Thoracic Radiology, 1993, 187(3): 777-782.
[64] Si W D, Gong J, Tsao R, et al.Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract[J]. Journal of Chromatography A, 2006, 1125(2): 204-210.
[65] Ikigai H, Nakae T, Hara Y, et al.Bactericidal catechins damage the lipid bilayer[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1993, 1147(1): 132-136.
[66] Moreno-Vásquez M J, Plascencia-Jatomea M, Sánchez-Valdes S, et al. Characterization of epigallocatechin-gallate-grafted chitosan nanoparticles and evaluation of their antibacterial and antioxidant potential[J]. Polymers, 2021, 13(9): 1375. doi: 10.3390/polym13091375.
[67] Huang T W, Ho Y C, Tsai T N, et al.Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles[J]. Carbohydrate Polymers, 2020, 242: 116312. doi: 10.1016/j.carbpol.2020.116312.
[68] Zhang H C, Jung T, Zhao Y Y, et al.Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded beta-chitosan nanoparticles of different particle sizes[J]. Carbohydrate Polymers, 2016, 137: 82-91.
[69] Rónavári A, Kovács D, Lgaz N, et al.Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study[J]. International Journal of Nanomedicine, 2017, 12: 871-883.
[70] Wu T L, Cui C Y, Fan C C, et al.Tea eggs-inspired high-strength natural polymer hydrogels[J]. Bioactive Materials, 2021, 6(9): 2820-2828.
[71] Hu B, Shen Y, Adamcik J, et al.Polyphenol-binding amyloid fibrils self-assembleinto reversible hydrogels with antibacterial activity[J]. ACS Nano, 2018, 12(4): 3385-3396.
[72] Yang C S, Ho C T, Zhang J S, et al.Antioxidants: differing meanings in food science and health science[J]. Journal of Agricultural and Food Chemistry, 2018, 66(12): 3063-3068.
[73] Zuo J, Zhang Z, Luo M C, et al.Redox signaling at the crossroads of human health and disease[J]. MedComm, 2022, 3(2): e127. doi: 10.1002/mco2.127.
[74] Sies H, Jones D P.Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nature Reviews Molecular Cell Biology, 2020, 21(7): 363-383.
[75] Sekowski S, Terebka M, Veiko A, et al.Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin: theoretical and experimental studies[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356: 379-388.
[76] Zhang B, Qin Y M, Yang L, et al.A polyphenol-network-mediated coating modulates inflammation and vascular healing on vascular stents[J]. ACS Nano, 2022, 16(4): 6585-6597.
[77] Yang P, Zhang J H, Xiang S Y, et al.Green nanoparticle scavengers against oxidative stress[J]. ACS Applied Materials and Interfaces, 2021, 13(33): 39126-39134.
[78] Shen W W, Wang Q W, Shen Y, et al.Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers[J]. ACS Central Science, 2018, 4(10): 1326-1333.
[79] Fan Q Q, Yang Z, Li Y H, et al.Polycatechol mediated small interfering RNA delivery for the treatment of ulcerative colitis[J]. Advanced Functional Materials, 2021, 31(24): 2101646. doi: 10.1002/adfm.202101646.
[80] Xu J, Wang J, Deng F, et al.Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro[J]. Antiviral Research, 2008, 78(3): 242-249.
[81] Weber J M, Umunyana A R, Imbeault L, et al.Inhibition of adenovirus infection and adenain by green tea catechins[J]. Antiviral Research, 2003, 58(2): 167-173.
[82] Zu M, Yang F, Zhou W L, et al.In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives[J]. Antiviral Research, 2012, 94(3): 217-224.
[83] Bettuzzi S, Gabba L, Cataldo S.Efficacy of a po1ypheno1ic standardized green tea extract for the treatment of covid 19 syndrome a proof of princip1e study[J]. COVID, 2021, 1(1): 2-12.
[84] Song J M, Lee K H, Seong B L.Antiviral efffect of catechins in green tea on influenza virus[J]. Antiviral Research, 2005, 68(2): 66-74.
[85] 熊立瑰, 刘思慧, 黄建安, 等. 茶的抗病毒作用研究进展[J]. 茶叶科学, 2021, 41(2): 143-158.
Xiong L G, Liu S H, Huang J A, et al.The antiviral properties of tea[J]. Journal of Tea Science, 2021, 41(2): 143-158.
[86] Ge M Y, Xiao Y, Chen H J, et al.Multiple antiviral approaches of (-)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro[J]. Antiviral Research, 2018, 158: 52-62.
[87] Williamson M, Mccormick T, Nance C, et al.Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy[J]. Journal of Allergy and Clinical Immunology, 2006, 118(6): 1369-1374.
[88] Calland N, Albecka A, Belouzard S, et al.(-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry[J]. Hepatology, 2012, 55(3): 720-729.
[89] Khaerunnisa S, Kurniawan H, Awaluddin R, et al.Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study[J]. Preprints, 2020: 2020030226. doi: 10.20944/preprints202003.
0226.v1.
[90] Nguyen T T H, Woo H J, Kang H K, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris[J]. Biotechnology Letters, 2012, 34(5): 831-838.
[91] Qamar M T, Alqahtani S M, Alamri M A, et al.Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants[J]. Journal of Pharmaceutical Analysis, 2020, 10(4): 313-319.
[92] Mhater S, Srivastava T, Naik S, et al.Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review[J]. Phytomedicine, 2021, 85: 153286. doi: 10.1016/j.phymed.2020.153286.
[93] Zhang Z C, Zhang X C, Bi K Y, et al.Potential protective mechanisms of green tea polyphenol EGCG against COVID-19[J]. Trends in Food Science and Technology, 2021, 114: 11-24.
[94] Reshamwala D, Shroff S, Amamuddy O S, et al.Polyphenols epigallocatechin gallate and resveratrol, and polyphenol-functionalized nanoparticles prevent enterovirus infection through clustering and stabilization of the viruses[J]. Pharmaceutics, 2021, 13(8): 1182. doi: 10.3390/pharmaceutics13081182.
[95] Zhu S, Li L L, Gu Z J, et al.15 years of small: research trends in nanosafety[J]. Small, 2020, 16(36): 2000980. doi: 10.1002/smll.202000980.
[96] Zhang C Y, Gao L, Yuan Q, et al.Is GSH chelated Pt molecule inactive in anti-ancer treatment? A case study of Pt 6 GS 4[J]. Small, 2020, 16(26): 2002044. doi: 10.1002/smll.202002044.
[97] Lin A, Liu Y N, Zhu X F, et al.Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition[J]. ACS Nano, 2019, 13(12): 13965-13984.
[98] Malhotra N, Audira G, Castillo A L, et al.An update report on the biosafety and potential toxicity of fullerene-based nanomaterials toward aquatic animals[J]. Oxidative Medicine and Cellular Longevity, 2021: 7995223. doi: 10.1155/2021/7995223.
[99] Zelepukin I V, Yaremenko A V, Ivanov I N, et al.Long-term fate of magnetic particles in mice: a comprehensive study[J]. ACS Nano, 2021, 15(7): 11341-11357.
[100] Sun D X, Zhou S, Gao W.What went wrong with anticancer nanomedicine design and how to make it right[J]. ACS Nano, 2020, 14(10): 12281-12290.
[101] Cai R, Chen C Y.The crown and the scepter: roles of the protein corona in nanomedicine[J]. Advanced Materials, 2019, 31(45): 1805740. doi: 10.1002/adma.201805740.
[102] Hussain S, Joo J, Kang J, et al.Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy[J]. Nature Biomedical Engineering, 2018, 2: 95-103.
[103] Qiao Y Q, Liu X M, Li B, et al.Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing[J]. Nature Communications, 2020, 11: 4446. doi: 10.1038/s41467-020-18268-0.
[104] Liu Y, Shi L Q, Su L Z, et al.Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control[J]. Chemical Society Reviews, 2019, 48(2): 428-446.
[105] Fan Y M, Lüchow M, Zhang Y N, et al.Nanogel encapsulated hydrogels as advanced wound dressings for the controlled delivery of antibiotics[J]. Advanced Functional Materials, 2021, 31(7): 2006453. doi: 10.1002/adfm.202006453.
[106] Cheng X T, Xu H D, Ran H H, et al.Glutathione-depleting nanomedicines for synergistic cancer therapy[J]. ACS Nano, 2021, 15(5): 8039-8068.
[107] Han S, Zal T, Sokolov K V.Fate of antibody-targeted ultrasmall gold nanoparticles in cancer cells after receptor-mediated uptake[J]. ACS Nano, 2021, 15(9): 9495-9508.
[108] Zhe W, Duan Y, Duan Y W.Application of polydopamine in tumor targeted drug delivery system and its drug release behavior[J]. Journal of Controlled Release, 2018, 290: 56-74.
[109] Zhang X C, He J, Qiao L.3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization[J]. Cell Proliferation, 2022: e13289. doi: 10.1111/cpr.13289.