Welcome to Journal of Tea Science,Today is
Research Paper

Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis

  • LUO Wei ,
  • ZHANG Jiaqi ,
  • YANG Ni ,
  • HU Zhihang ,
  • HAO Jiannan ,
  • LIU Hui ,
  • TAN Shanshan ,
  • ZHUANG Jing
Expand
  • 1. Ministry of Agriculture and Rural Affair Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Tea Research Institution, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
    2. State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2024-03-06

  Revised date: 2024-06-08

  Online published: 2024-09-03

Abstract

Sucrose transporters (SUTs), the main sucrose carriers, consume energy to transport and load sucrose, which play a key role in the transport of plant photosynthetic products from source to sink. In this study, seven members of CsSUTs family were identified from Camellia sinensis ‘Shuchazao’ by bioinformatics analysis. Their physical and chemical properties, gene structure, subcellular localization, evolutionary relationship and cis-acting elements were analyzed. The identified CsSUT proteins, containing a conserved MFS-2 domain, are closely related to AtSUC proteins in Arabidopsis thaliana, which are clustered in SUTⅠ, Ⅱ and Ⅳ. AtSUC proteins of Arabidopsis thaliana were used as a model in the STRING online website to speculate that there might be a direct interaction between CsSUT proteins and SWEET, SUS and STP proteins. Analysis of the promoter regions of the CsSUT family genes in tea plants reveals that there were masses of cis-acting elements related to hormone response, abiotic stress, and plant growth and development. It is speculated that these promoters may be regulated by plant hormones, stress and other factors, thus affecting the growth and development of tea plants. There were differences in the expression patterns of CsSUT family genes in C. sinensis ‘Longjing 43’ and C. sinensis ‘Shuchazao’. CsSUT6 was highly expressed in flowers, suggesting that it may contribute to the supply, storage and distribution of sucrose in floral organs. CsSUT1 and CsSUT5 were highly expressed in various organs of tea plants, indicating that they may synergistically participate in the process of sucrose loading in ‘ source’ leaves and unloading in ‘sink’ organs.

Cite this article

LUO Wei , ZHANG Jiaqi , YANG Ni , HU Zhihang , HAO Jiannan , LIU Hui , TAN Shanshan , ZHUANG Jing . Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis[J]. Journal of Tea Science, 2024 , 44(4) : 585 -597 . DOI: 10.13305/j.cnki.jts.2024.04.002

References

[1] 刘春方, 刘文艳, 滕瑞敏, 等. 茶树转录因子CsbHLH137基因鉴定及光合特性与生物钟响应分析[J]. 西北植物学报, 2022, 42(2): 210-220.
Liu C F, Liu W Y, Teng R M, et al.Identification and response analysis of the CsHLH137 transcription factor gene to photosynthetic characteristics and circadian clock in Camellia sinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(2): 210-220.
[2] 何颖. 茶树光合氮素利用效率及其影响因素研究[D]. 南京: 南京农业大学, 2022.
He Y.Photosythetic nitrogen use efficiency of tea and its affecting factors [D]. Nanjing: Nanjing Agricultural University, 2022.
[3] 耿艳秋, 董肖昌, 张春梅. 园艺作物糖转运蛋白研究进展[J]. 园艺学报, 2021, 48(4): 676-688.
Geng Y Q, Dong X C, Zhang C M.Research progress of sugar transporters in horticultural crops[J]. Acta Horticulturae Sinica, 2021, 48(4): 676-688.
[4] Xu X Y, Yang Y H, Liu C X, et al.The evolutionary history of the sucrose synthase gene family in higher plants[J]. BMC Plant Biology, 2019, 19(1): 566. doi: 10.1186/s12870-019-2181-4.
[5] Wen S, Neuhaus H E, Cheng J, et al.Contributions of sugar transporters to crop yield and fruit quality[J]. Journal of Experimental Botany, 2022, 73(8): 2275-2289.
[6] 涂文睿, 蔡昱萌, 颜婧, 等. 植物蔗糖转运蛋白及其生理功能的研究进展[J]. 生物技术通报, 2017, 33(4): 1-7.
Tu W R, Cai Y M, Yan J, et al.Research progresses on plant sucrose transporters and physiological functions[J]. Biotechnology Bulletin, 2017, 33(4): 1-7.
[7] Slewinski T, Garg A, Johal G, et al.Maize SUT1 functions in phloem loading[J]. Plant Signaling and Behavior, 2010, 5(6): 687-690.
[8] Kühn C, Grof C P.Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297.
[9] Weise A, Barker L, Kühn C, et al.A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants[J]. The Plant Cell, 2000, 12(8): 1345-1355.
[10] Aoki N, Hirose T, Scofield G N, et al.The sucrose transporter gene family in rice[J]. Plant and Cell Physiology, 2003, 44(3): 223-232.
[11] Zhang H P, Zhang S J, Qin G H, et al.Molecular cloning and expression analysis of a gene for sucrose transporter from pear (Pyrus bretschneideri Rehd.) fruit[J]. Plant Physiology and Biochemistry, 2013, 73: 63-69.
[12] Deol K K, Mukherjee S, Gao F, et al.Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2013, 13: 181. doi: 10.1186/1471-2229-13-181.
[13] 寿伟松, 王铎, 沈佳, 等. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102.
Shou W S, Wang D, Shen J, et al.Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102.
[14] Hirose T, Zhang C J, Miyao A, et al.Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected[J]. Journal of Experimental Botany, 2010, 61(13): 3639-3646.
[15] 张玲. 草莓蔗糖代谢与转运相关基因对果实糖分积累的影响机理[D]. 兰州: 甘肃农业大学, 2018.
Zhang L.The effect of genes for sucrose metabolism and transportion on fruit sugar accumulation in strawberry (Fragaria×ananassa Duch.) [D]. Lanzhou: Gansu Agricultural University, 2018.
[16] Chincinska I, Gier K, Krügel U, et al.Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Frontiers in Plant Science, 2013, 4: 26. doi: 10.3389/fpls.2013.00026.
[17] Payyavula R S, Tay K H, Tsai C J, et al.The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning[J]. The Plant Journal, 2011, 65(5): 757-770.
[18] 张玉梅, 胡润芳, 林国强. 菜用大豆蔗糖转运蛋白基因家族的克隆及表达分析[J]. 中国细胞生物学学报, 2018, 40(11): 1876-1885.
Zhang Y M, Hu R F, Lin G Q.Gene clone and expression analysis of sucrose transporter gene family from vegetable soybean[J]. Chinese Journal of Cell Biology, 2018, 40(11): 1876-1885.
[19] Radchuk V, Riewe D, Peukert M, et al.Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains[J]. Journal of Experimental Botany, 2017, 68(16): 4595-4612.
[20] 李孟珠, 王高鹏, 巫月, 等. 水稻蔗糖转运蛋白OsSUT4参与蔗糖转运的功能研究[J]. 中国水稻科学, 2020, 34(6): 491-498.
Li M Z, Wang G P, Wu Y, et al.Function analysis of sucrose transporter OsSUT4 in sucrose transport in rice[J]. Chinese Journal of Rice Science, 2020, 34(6): 491-498.
[21] Wang Z, Wei P, Wu M Z, et al.Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns[J]. Planta, 2015, 242(1): 153-166.
[22] Frost C J, Nyamdari B, Tsai C J, et al.The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis[J]. Public Library of Science ONE, 2012, 7(8): e44467. doi: 10.1371/journal. pone.0044467.
[23] Gong X, Liu M, Zhang L, et al.Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway[J]. Physiologia Plantarum, 2015, 153(1): 119-136.
[24] 晁毛妮, 王斌, 陈煜, 等. 陆地棉蔗糖转运蛋白基因家族的鉴定及表达分析[J]. 西北植物学报, 2020, 40(8): 1303-1312.
Chao M N, Wang B, Chen Y, et al.Identification and expression analysis of sucrose transporter gene family in upland cotton (Gossypium hirsutum L.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8): 1303-1312.
[25] 谷梦雅, 王鹏杰, 金珊, 等. 基于转录组分析不同强度红光对茶树苯丙烷类代谢的影响[J]. 应用与环境生物学报, 2021, 27(6): 1636-1644.
Gu M Y, Wang P J, Jin S, et al.Effects of different red LED light intensities on phenylpropanoid metabolism of tea plants based on transcriptomics[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(6): 1636-1644.
[26] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408.
[27] Yan N.Structural advances for the major facilitator superfamily (MFS) transporters[J]. Trends in Biochemical Sciences, 2013, 38(3): 151-159.
[28] Chen W Q, Diao W P, Liu H Q, et al.Molecular characterization of SUT gene family in Solanaceae with emphasis on expression analysis of pepper genes during development and stresses[J]. Bioengineered, 2022, 13(6): 14780-14798.
[29] 姚慧玲, 范海阔, 刘蕊, 等. 椰子SUT基因家族的生物信息学及其表达分析[J]. 热带农业科学, 2021, 41(6): 91-97.
Yao H L, Fan H K, Liu R, et al.Bioinformatics and expression analysis of coconut SUT gene family[J]. Chinese Journal of Tropical Agriculture, 2021, 41(6): 91-97.
[30] 岳川. 茶树糖类相关基因的挖掘及其在茶树冷驯化中的表达研究[D]. 北京: 中国农业科学院, 2016.
Yue C.Cloning and expression analysis of sugar-related genes during cold acclimation in tea plants [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
[31] Ruan Y L.Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65(1): 33-67.
[32] Deng B, Gu X, Chen S, et al.Genome-wide analysis and characterization of Dendrocalamus farinosus SUT gene family reveal DfSUT4 involvement in sucrose transportation in plants[J]. Frontiers in Plant Science, 2023, 13: 1118398. doi: 10.3389/fpls.2022.1118398.
[33] Ma X, Chang Y, Li F, et al.CsABF3-activated CsSUT1 pathway is implicated in pre-harvest water deficit inducing sucrose accumulation in citrus fruit[J]. Horticultural Plant Journal, 2024, 10(1): 103-114.
[34] Liang Y, Bai J, Xie Z, et al.Tomato sucrose transporter SlSUT4 participates in flowering regulation by modulating gibberellin biosynthesis[J]. Plant Physiology, 2023, 192(2): 1080-1098.
[35] Zhao Z, Wang C, Yu X, et al.Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice[J]. PNAS, 2022, 119(36): e2121671119. doi: 10.1073/pnas.2121671119.
[36] 韩静静. 牡丹蔗糖转运蛋白基因PsSUT2启动子的克隆及其互作转录因子的筛选[D]. 郑州: 河南农业大学, 2024.
Han J J.Cloning of the promoter of the sucrose transporter protein gene PsSUT2 and screening of its reciprocal transcription factors in the peony [D]. Zhengzhou: Henan Agricultural University, 2024.
[37] Scofield G N, Aoki N, Hirose T, et al.The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants[J]. Journal of Experimental Botany, 2007, 58(3): 483-495.
[38] Lu M, Snyder R, Grant J, et al.Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools[J]. The Plant Journal, 2020, 101(1): 217-236.
[39] Jia W, Zhang L, Wu D, et al.Sucrose transporter AtSUC9 mediated by a low sucrose level is involved in Arabidopsis abiotic stress resistance by regulating sucrose distribution and ABA accumulation[J]. Plant and Cell Physiology, 2015, 56(8): 1574-1587.
[40] Barker L, Kühn C, Weise A, et al.SUT2, a putative sucrose sensor in sieve elements[J]. The Plant Cell, 2000, 12(7): 1153-1164.
[41] Ma Q, Sun M, Kang H, et al.A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser for phosphorylation to enhance salt tolerance[J]. Plant, Cell and Environment, 2019, 42(3): 918-930.
[42] Li J W, Wang Y, Suh J H.Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: current technologies and perspectives[J]. Food Science and Human Wellness, 2022, 11(3): 524-536.
[43] 杨霁虹, 周汉琛, 徐玉婕. 不同茶树品种中CsNUDX1基因催化功能、启动子结构及功能分析[J]. 茶叶科学, 2023, 43(5): 621-630.
Yang J H, Zhou H C, Xu Y J.Catalytic function, promoter structure and functional analysis of CsNUDX1-cyto in different tea cultivars[J]. Journal of Tea Science, 2023, 43(5): 621-630.
Outlines

/