Welcome to Journal of Tea Science,Today is
Research Paper

Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition

  • YANG Nan ,
  • LI Zhuan ,
  • LIU Meichen ,
  • MA Junjie ,
  • SHI Yuntao ,
  • WEI Xiangning ,
  • LIN Yangshun ,
  • MAO Yuyuan ,
  • GAO Shuilian
Expand
  • 1. College of Horticulture & Anxi College of Tea Science, Fujian Agriculture Forestry University, Fuzhou 350002, China;
    2. Quanzhou Special Talent Innovation Laboratory of Fujian Richun Industry Co., Ltd., Quanzhou 362000, China;
    3. Fujian Collaborative Innovation Center for Green Cultivation and Processing of Tea Tree in Colleges and Universities, Quanzhou 362406, China

Received date: 2024-07-14

  Revised date: 2024-09-23

  Online published: 2025-01-08

Abstract

Epigallocatechin gallate (EGCG) is an important flavor and health functional component in tea. Previous studies have found that EGCG biosynthesis in tea plants is affected by potassium nutrition, but the regulatory mechanism of its biosynthesis is currently unclear. This study used one year old tea seedlings of Huangdan as the experimental object, and set up 5 treatment groups (K1-K5), with K2SO4 concentrations of 0.4, 0.6, 0.8, 1.0 mmol∙L-1 and 1.2 mmol∙L-1 for irrigation, respectively. The joint analysis of transcriptomics and metabolomics shows that, under low-potassium treatment (K1), the flavonoid contents in the new shoots of tea plants accumulated significantly and the EGCG content reached the highest level, and the difference reached a significant level compared with that of the high potassium treatment (K5). The related metabolites of phenylalanine, cinnamic acid and p-coumaric acid on the EGCG synthesis pathway were up-regulated in the K4 or K5 treatments, whereas the downstream metabolites of the flavonoid pathway (dihydroquercetin, dihydromyricetin, colorless delphinidin pigment and epigallocatechin) were up-regulated in the K1 and K2 treatments. Under the influence of potassium nutrition, EGCG biosynthesis was positively regulated by a series of structural genes CsCHI, F3′5′H, CsF3H (CSS0019002), CsANS, CsANR, Csaro DE, CsSCPL, and transcription factor (MYB306), as well as negatively regulated by CsPAL, CsC4H, Cs4CL, CsCHS, CsF3H (CSS0016177), CsDFR (CSS0011557) and transcription factor (NAC83). It is thus clear that potassium nutrition regulates EGCG synthesis by affecting the expressions of key genes in tea plants, thereby affecting EGCG content. This study provided a scientific basis for the regulation of EGCG biosynthesis in tea plants by potassium nutrition.

Cite this article

YANG Nan , LI Zhuan , LIU Meichen , MA Junjie , SHI Yuntao , WEI Xiangning , LIN Yangshun , MAO Yuyuan , GAO Shuilian . Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition[J]. Journal of Tea Science, 2024 , 44(6) : 887 -900 . DOI: 10.13305/j.cnki.jts.2024.06.012

References

[1] Varshney K.An analysis of health benefits of green tea[J]. Asian Journal of Research in Social Sciences and Humanities, 2021, 11(11): 895-900.
[2] Alam M, Ali S, Ashraf G M, et al.Epigallocatechin 3-gallate: from green tea to cancer therapeutics[J]. Food Chemistry, 2022, 379:132135. doi: 10.1016/j.foodchem.2022.132135.
[3] Dong C W, Yang C S, Liu Z Y, et al.Nondestructive testing and visualization of catechin content in black tea fermentation using hyperspectral imaging[J]. Sensors, 2021, 21(23): 8051. doi: 10.3390/s21238051.
[4] 陈宗懋. 茶与健康研究的前景与挑战[J]. 中国茶叶, 2019, 41(9): 11-14.
Chen Z M.Prospects and challenges of tea and health research[J]. China Tea, 2019, 41(9): 11-14.
[5] Silva R F M, Pogačnik L. Polyphenols from food and natural products: neuroprotection and safety[J]. Antioxidants, 2020, 9(1): 61. doi: 10.3390/antiox9010061
[6] 刘亚军, 王培强, 蒋晓岚, 等. 茶树单体和聚合态儿茶素生物合成的研究进展[J]. 茶叶科学, 2022, 42(1): 1-17.
Liu Y J, Wang P Q, Jiang X L, et al.Research progress on the biosynthesis of monomeric and polymeric catechins in Camellia sinensis[J]. Journal of Tea Science, 2022, 42(1): 1-17.
[7] 夏涛, 高丽萍, 刘亚军, 等. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320.
Xia T, Gao L P, Liu Y J, et al.Advances in research of biosynthesis and hydrolysis pathways of gallated catechins in Camellia sinensis[J]. Scientia Agricultura Sinica, 2013, 46(11): 2307-2320.
[8] 胡晓婧, 许玉娇, 高丽萍, 等. 茶树黄烷酮3-羟化酶基因(F3H)的克隆及功能分析[J]. 农业生物技术学报, 2014, 22(3): 309-316.
Hu X J, Xu Y J, Gao L P, et al.Cloning and functional analysis of flavanone 3- hydroxylase gene (F3H) in tea (Camellia sinensis)[J]. Journal of Agricultural Biotechnology, 2014, 22(3): 309-316.
[9] 陆建良, 林晨, 骆颖颖, 等. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 95-103.
Lu J L, Lin C, Luo Y Y, et al.Progress in functional gene cloning of Camellia sinensis[J]. Journal of Tea Science, 2007, 27(2): 95-103.
[10] Zhao S, Cheng H, Xu P, et al.Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant (Camellia sinensis): a review[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(30): 10520-10535.
[11] Zhao L Q, Shan C M, Shan T Y, et al.Comparative transcriptomic analysis reveals the regulatory mechanisms of catechins synthesis in different cultivars of Camellia sinensis[J]. Food Research International, 2022, 157: 111375. doi: 10.1016/j.foodres.2022.111375.
[12] Ahmad M Z, Li P, She G, et al.Genome-wide analysis of serine carboxypeptidase-like acyltransferase gene family for evolution and characterization of enzymes involved in the biosynthesis of galloylated catechins in the tea plant (Camellia sinensis)[J]. Frontiers in Plant Science, 2020, 11: 848. doi: 10.3389/fpls.2020.00848.
[13] Wei K L, Liu M Y, Shi Y P, et al.Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid[J]. Agronomy, 2022, 12(5): 1086. doi: 10.3390/agronomy12051086.
[14] Zhou Z J, Chen K, Yu H, et al.Changes in tea performance and soil properties after three years of polyhalite application[J]. Agronomy Journal, 2019, 111(4): 1967-1976.
[15] Ruan J Y, Ma L F, Shi Y P.Potassium management in tea plantations: its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 450-459.
[16] 林郑和, 钟秋生, 陈常颂, 等. 缺钾对茶树幼苗叶片叶绿素荧光特性的影响[J]. 植物营养与肥料学报, 2012, 18(4): 974-980.
Lin Z H, Zhong Q S, Chen C S, et al.Effects of potassium deficiency on chlorophyll fluorescence in leaves of tea seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 974-980.
[17] 童启庆. 茶树栽培学[M]. 北京: 中国农业出版社, 2006: 344.
Tong Q Q.Tea cultivation[M]. Beijing: China Agriculture Press, 2006: 344.
[18] Lin J, Wilson I W, Ge G, et al.Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1 hybrid of Camellia sinensis L. with differing EGCG content[J]. Tree Genetics & Genomes, 2017, 13(1): 1-14.
[19] Bhattacharya A.Soil water deficit and physiological issues in plants[M]. Singapore: Springer, 2021.
[20] Huang W, Lin M Y, Liao J M, et al.Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil: a critical review[J]. Horticulturae, 2022, 8(7): 660. doi: 10.3390/horticulturae8070660.
[21] Zhao T, Xie S, Zhang Z W.Effects of foliar-sprayed potassium dihydrogen phosphate on accumulation of flavonoids in Cabernet Sauvignon (Vitis Vinifera L.)[J]. Journal of the Science of Food and Agriculture, 2023, 103(10): 4838-4849.
[22] Wang Y S, Gao L P, Shan Y, et al.Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze)[J]. Scientia Horticulturae, 2012, 141: 7-16.
[23] Saxe H J, Horibe T, Balan B, et al.Two UGT84A family glycosyltransferases regulate phenol, flavonoid, and tannin metabolism in juglans regia (English Walnut)[J]. Frontiers in Plant Science, 2021, 12: 626483. doi: 10.3389/fpls.2021.626483.
[24] Gao X, Zhang S X, Zhao X J, et al.Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes[J]. Plos One, 2018, 13(7): e0200903. doi: 10.1371/journal.pone.0200903.eCollection 2018.
[25] 张锋, 韩金龙, 倪大鹏, 等. 钾素对白花丹参和紫花丹参产量、品质及养分吸收的影响[J]. 西北农业学报, 2016, 25(7): 1050-1055.
Zhang F, Han J L, Ni D P, et al.Effects of Potassium fertilizer on yield, quality and nutrient uptake of Salvia miltiorrhiza Bge.f.alba and Salvia miltiorrhiza bunge[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(7): 1050-1055.
[26] 王千, 依艳丽, 张淑香. 不同钾肥对番茄幼苗酚类物质代谢作用的影响[J]. 植物营养与肥料学报, 2012, 18(3): 706-716.
Wang Q, Yi Y L, Zhang S X.Effects of different potassium on phenol metabolism of tomato seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 706-716.
[27] Ibrahim M H, Jaafar H Z E, Karimi E, et al. Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) exposed to potassium fertilization under greenhouse conditions[J]. International Journal of Molecular Sciences, 2012, 13(11): 15321-15342.
[28] Xiong L, Li J, Li Y, et al.Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry, 2013, 71: 132-143.
[29] Liu W, Zhu D W, Liu D H, et al.Comparative metabolic activity related to flavonoid synthesis in leaves and flowers of Chrysanthemum morifolium in response to K deficiency[J]. Plant and Soil, 2010, 335(1/2): 325-337.
[30] Gao T, Hou B H, Shao S X, et al.Differential metabolites and transcriptional regulation of seven major tea cultivars (Camellia sinensis) in China[J]. Journal of Integrative Agriculture, 2023, 22(11): 3346-3363.
[31] 张芷苓, 张媛媛, 林晓蓉, 等. 茶儿茶素合成关键酶基因CsANSCsLAR的功能鉴定[J]. 园艺学报, 2024, 51(4): 804-814.
Zhang Z L, Zhang Y Y, Lin X R, et al.Functional characterization of key genes CsANS and CsLAR involved in catechin biosynthesis in Camellia sinensis[J]. Acta Horticulturae Sinica, 2024, 51(4): 804-814.
[32] Shi L Y, Cao S F, Chen X, et al.Proanthocyanidin synthesis in Chinese bayberry (Myrica rubra Sieb. et Zucc.) Fruits[J]. Frontiers in Plant Science, 2018, 9: 212. doi: 10.3389/fpls.2018.00212.eCollection 2018.
[33] 陈波浪, 盛建东, 蒋平安, 等. 钾营养对水培棉花氮、磷、钾分配和3种植物激素含量的影响[J]. 新疆农业大学学报, 2008(1): 60-63.
Chen B L, Sheng J D, Jiang P A, et al.Effects of potassium nutrition on distribution of nitrogen, phosphorus and potassium and the hormones content of three plants in cotton with liquid[J]. Journal of Xinjiang Agricultural University, 2008(1): 60-63.
[34] 王峰, 叶静, 高敬文, 等. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933.
Wang F, Ye J, Gao J W, et al.Potassium alleviates inhibition of ammonium stress on wheat root[J]. Acta Agriculturae Zhejiangensis, 2020, 32(11): 1923-1933.
Outlines

/