The mouse model of acute hyperuricemia was established by using 300 mg·kg-1 oxonic acid potassium salt to evaluate the influence of catechins on serum uric acid. The xanthine oxidase (XOD) activity in serum and liver and the inhibitory effect of catechins on XOD in vitro was further studied. Results showed that with dosage of 600 mg·kg-1, EC, ECG and EGC reduced the serum uric acid level in vivo significantly by 23% (P<0.001), 35% (P<0.001) and 37% (P<0.001), respectively compared with the model group. ECG could reduce XOD activity in serum and liver approximately by 31% (P<0.01) and 32% (P<0.05). In vitro, ECG and EGCG could inhibit XOD activity. Therefore EC, ECG and EGC could reduce the level of uric acid of hyperuricemia mice. The mechanism of uric acid lowering effect of ECG might be associated with its inhibitory effect on XOD.
JIN Hongna
,
SONG Yewei
,
CUI Weibo
,
XIE Hong
. Effects of Catechins on Acute Hyperuricemia in Mice[J]. Journal of Tea Science, 2016
, 36(4)
: 347
-353
.
DOI: 10.13305/j.cnki.jts.2016.04.002
[1] 李昌臣. 高尿酸血症与痛风高尿酸血症的定义及病型分类[J]. 医师进修杂志, 1998(6): 3-4.
[2] 叶任高, 陆再英. 内科学[M]. 6版. 北京: 人民卫生出版社, 2004: 862-865.
[3] 伍沪生. 痛风与晶体性关节炎[M]. 北京: 人民卫生出版社, 2014: 17-20.
[4] 王超英, 何金红. 高尿酸血症与高血压、肥胖、高血脂、糖尿病的关系分析[J]. 实用医学杂志, 2010, 26(5): 819-821.
[5] Choi H K, Ford E S.Prevalence of the metabolic syndrome in individuals with hyperuricemia[J]. American Journal of Medicine, 2007, 120(5): 442-447.
[6] 纵仁荣. 高尿酸血症与高血压、高血脂及高血糖三者之间关系[J]. 当代临床医刊, 2015(1): 1233.
[7] Lim A Y N, Gim Gee T. Allopurinol: a necessary evil[J]. Singapore Medical Journal, 2009, 50(9): 925-926.
[8] Markel Arie.Allopurinol-induced DRESS syndrome[J]. Israel Medical Association Journal Imaj, 2005, 7(10): 656-660.
[9] 石碧, 狄荧, 植物多酚[M]. 北京: 科学出版社, 2000: 175-176.
[10] 谭明亮, 陈刚. 茶多酚对高尿酸血症小鼠尿酸水平的影响及机制研究[J]. 食品工业科技, 2015, 36(12): 349-352.
[11] 谢华, 戢璐, 陈敏, 等. 茶多酚和维生素C联合补充对高尿酸血症伴脂代谢异常者的改善效果研究[J]. 营养学报, 2010, 32(6): 575-578.
[12] 厉兰娜, 王翠莲, 朱惠芳, 等. 茶色素干预原发性痛风性高尿酸血症的临床观察[J]. 现代中西医结合杂志, 2007, 16(2): 154-155.
[13] 吴迪, 杨丽珠, 仇佩虹, 等. 茶中儿茶素的分离分析方法研究进展[J]. 分析科学学报, 2008(4): 468-472.
[14] Mazzali M, Kanellis J, Han L, et al.Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism[J]. American Journal of Physiology Renal Physiology, 2002, 282(6): 991-997.
[15] Nguyen M T, Awale S, Tezuka Y, et al.Hypouricemic effects of acacetin and 4,5-O-dicaffeoylquinic acid methyl ester on serum uric acid levels in potassium oxonate-pretreated rats (pharmacology)[J]. Biological & Pharmaceutical Bulletin, 2005, 28(12): 2231-2234.
[16] Murugaiyah V, Chan K L.Mechanisms of antihyperuricemic effect of Phyllanthus niruri and its lignan constituents[J]. Journal of Ethnopharmacology, 2009, 124(2): 233-239.
[17] 牛艳芬, 高丽辉, 刘旭, 等. 芒果苷对氧嗪酸钾所致慢性高尿酸血症大鼠尿酸及肝肾功能的影响[J]. 中国药理学通报, 2012, 28(11): 1578-1581.
[18] Laure L, Sylvie B.Theoretical study of the mechanism of inhibition of xanthine oxidase by flavonoids and gallic acid derivatives[J]. Journal of Physical Chemistry B, 2010, 114(114): 921-928.
[19] 臧路平, 刘志刚, 吴新荣. 高尿酸血症发病机制及其药物治疗研究进展[J]. 医药导报, 2011, 30(1): 69-73.
[20] 马思佳, 段灵, 董新海, 等. 茶多酚抗高尿酸血症的实验研究[J]. 营养学报, 2014, 36(4): 351-355.
[21] Lei-Chwen L, Meng-Nan W, Ting-Yu T, et al.Pharmacokinetics of (-)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution[J]. Journal of Agricultural & Food Chemistry, 2007, 55(4): 1517-1524.