Welcome to Journal of Tea Science,Today is

Effects of Exogenous 24-epibrassinolide on the Photosynthetic Characteristics of Tea Plants (Camellia sinensis)

  • LI Zhixin ,
  • LI Xin ,
  • FAN Lichao ,
  • HAN Wenyan
Expand
  • 1. Tea Research Insititute, Chinese Academy of Agricultural Science, Hangzhou 310008, China;
    2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2015-06-01

  Revised date: 2015-09-09

  Online published: 2019-08-26

Abstract

24-epibrassinolide (EBR) is an important plant hormone, which plays an important role in a variety of adverse resistance in plants. The effects of exogenous EBR on photosynthesis, Rubisco and FBPase activity and the expression of related-gene from tea leaves (Camellia sinensis cv. ‘Longjing 43’, ‘Xiangguliaobaihao’, and ‘Qingmingzao’) under field condition were investigated. It was showed that after exogenous EBR (0.1βmg·L-1) treatment: Net photosynthetic rate of these three cultivars increased by 49.06%, 45.49% and 92.34% respectively. Vcmax increased by 21.82%, 21.68 % and 21.68%, and Jmax increased by 17.16%, 23.86% and 23.86%, respectively. The activity of Rubisco and FBPase increased significantly. Furthermore, the expression of Rubisco and FBPase related-gene increased significantly. These results suggested that application of exogenous EBR could enhance Vcmax, Jmax and the activity of Rubisco and FBPase effectively, which ultimately promoted the photosynthetic carbon fixation, and the photosynthetic rate of tea plants.

Cite this article

LI Zhixin , LI Xin , FAN Lichao , HAN Wenyan . Effects of Exogenous 24-epibrassinolide on the Photosynthetic Characteristics of Tea Plants (Camellia sinensis)[J]. Journal of Tea Science, 2015 , 35(6) : 543 -550 . DOI: 10.13305/j.cnki.jts.2015.06.005

References

[1] 陶汉之, 王镇恒. 我国茶树光合作用研究进展及发展趋势[J]. 茶叶科学, 1995, 15(1): 1-8.
[2] 岳川, 曾建明, 章志芳, 等. 茶树中植物激素研究进展[J]. 茶叶科学, 2012, 32(5): 382-392.
[3] 周宇飞, 王德权, 陆樟镳, 等. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响[J]. 中国农业科学, 2014(4): 655-663.
[4] 陈瑛, 陶文沂. 几种激素对茶愈伤组织合成茶氨酸的影响[J]. 无锡轻工大学学报, 1998(1): 76-79.
[5] 陶汉之, 陶迁, 程茱萸, 等. 外源激素和微量元素对茶籽萌发过程中酶活性影响的研究[J]. 作物学报, 1999(6): 712-717.
[6] 柴红玲, 郑生宏, 叶志森. 外源激素对中茶108扦插育苗的影响[J]. 浙江农业科学, 2015(2): 183-186.
[7] 郑红发, 黄亚辉, 粟本文, 等. 施用外源激素对茶叶安全性影响的研究[J]. 茶叶通讯, 2005(2): 4-6.
[8] Grove M D, Spencer F G, Rohwededer W K, et al. Brassinolide, a plant growth promoting steroid isolated from Brassicanapus pollen[J]. Nature, 1979, 281(2): 216-217.
[9] Santner A, Li C V, Estelle M.Plant hormones are versatile chemical regulators of plant growth[J]. Nature Chemical Biology, 2009, 5(5): 301-307.
[10] Vardhini B V, Rao S R.Effect of brassinosteroids on growth,metabolite content and yield of Arachis hypogaea[J]. Phytochemistry, 1998, 48(6): 927-930.
[11] Braun P, Wild A.The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants[J]. Journal of Plant Physiology, 1984, 116(2): 189-196.
[12] Saygideger S, Deniz F.Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress[J]. Plant Growth Regulation, 2008, 56(3): 219-223.
[13] Yuan G F, Jia C G, Li Z, et al. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress[J]. Scientia Horticulturae, 2010, 126(2): 103-108.
[14] Bajguz A, Hayat S.Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry, 2009, 47(1): 1-8.
[15] 洪海林. 喷施BR-120对春茶有明显的增产效应[J]. 中国茶叶, 1995, 15(4): 25.
[16] McMurtrie R E, Wang Y P. Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures[J]. Plant Cell and Environment, 1993, 16(1): 1-13.
[17] Du Y C, Nose A, Kawamitsu Y, et al. An improved spectrophotometric determination of the activity of ribulose 1,5-bisphosphate carboxylase[J]. Japanese Journal of Crop Science, 1996, 65(4): 714-721.
[18] Nakano H, Muramatsu S, Makino A, et al. Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean[J]. Australian Journal of Plant Physiology, 2000, 27(2): 167-173.
[19] Scheibe R, Fickenscher K, Ashton A R.Studies on the mechanism of the reductive activation of NADP-malate dehydrogenase by thioredoxin m and low molecular weight thiols[J]. Biochimica et Biophysica Acta, 1986, 870: 191-197.
[20] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method[J]. Methods, 2001, 25(4): 402-408.
[21] Farquhar G D, Sharkey T D.Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982: 33317-33345.
[22] Farquhar G D, Caemmerer S V, Berry J A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
[23] Portis A R.Rubisco activase - Rubisco's catalytic chaperone[J]. Photosynthesis Research, 2003, 75(1): 11-27.
[24] Stitt M, Cseke C, Buchana B B.Regulation of fructose-2,6-bisphosphate concentration in spinach leaves[J]. Eur J Biochem, 1984, 143(1): 89-93.
[25] 胡文海, 黄黎锋, 毛伟华, 等. 油菜素内酯对黄瓜苗期叶片光合机构调节作用的研究[J]. 园艺学报, 2006(4): 762-766.
[26] 李宁, 郭世荣, 束胜, 等. 外源24-表油菜素内酯对弱光胁迫下番茄幼苗叶片形态及光合特性的影响[J]. 应用生态学报, 2015(3): 847-852.
[27] 彭予咸, 胡留杰, 邓敏, 等. 植物生长调节剂对茶新梢叶绿素荧光特性的影响[J]. 西南农业学报, 2013(2): 514-519.
[28] Whitney S M, Houtz R L, Alonso H.Advancing our Understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco[J]. Plant Physiology, 2011, 155(1): 27-35.
[29] Andersson I,Backlund A.Structure and function of Rubisco[J]. Plant Physiology and Biochemistry,2008: 46275-46291.
[30] Jiang D A, Xu Y F.Internal dominant factors for declination of photosynthesis during rice leaf senescence[J]. Journal of Zhejiang Agricultural University, 1995, 21(5): 533-538.
[31] Wang J Y, Zhu S G, Xu C F.Biochemistry [M]. Beijing: Higher Education Press, 2002.
[32] Long S P, Bernacchi C J.Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 2003, 54(392): 2393-2401.
[33] Stitt M.Fructose-2,6-bisphosphate as a regulatory molecule in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 41153-41185.
[34] 张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展[J]. 生态学报, 2012, 32(18): 5907-5917.
Outlines

/