(-)-Epigallocatechin-3-gallate (EGCG) and ascorbic acid (Vc) were loaded in heat treated β-lactoglobulin (β-Lg) to prepare EGCG naonparticles. The effects of EGCG and Vc with different molar ratios on the particle size, Zeta potential, entrapment efficiency, loading capacity, the change of color were investigated. The antitumor activity and mechanism of EGCG naonparticles were obtained by MTT assay and cytokinesis block micronucleus test (CBMNT). The results showed that EGCG naonparticles had stronger inhibition on human melanoma cell (A-375) and esophageal carcinoma cell (TE-1), and significantly increased the number of micronuclei, necrosis and apoptosis of the A-375 and TE1-1 carcinoma cell.
HUANG Meirong
,
YING Hao
,
JIANG Yongwen
,
JIANG Heyuan
,
DU Qizhen
. Research on Preparation and Antitumor Activity of EGCG Naonparticles[J]. Journal of Tea Science, 2015
, 35(6)
: 605
-612
.
DOI: 10.13305/j.cnki.jts.2015.06.015
[1] 刘超, 陈若芸. 儿茶素及其类似物的化学和生物活性研究进展[J]. 中国中药杂志, 2004, 29(10): 1017-1021.
[2] Ponniah K, Loo TS, Edwards PJ, et al. The production of soluble and correctly folded recombinant bovine beta-lactoglobulin variants A and B in Escherichia coli for NMR studies[J]. Protein Expr Purif, 2010, 70(2): 283-289.
[3] 吕程. β-乳球蛋白的结构特性及其在食品工业中的应用[J]. 黄牛杂志, 2005, 31(6): 36-39.
[4] 杨建辉. 维生素C生物学活性研究进展[J]. 现代诊断与治疗, 2012, 23(5): 434-437.
[5] Lee KW, Lee HJ, Kang KS, et al. Preventive effects of vitamin C on carcinogenesis[J]. Lancet, 2002, 359(9301): 172-172.
[6] Zorilla R, Liang L, Remondetto G, et al. Interaction of epigallocatechin-3-gallate with β-lactoglobulin: molecular characterization and biological implication[J]. Dairy Science & Technology, 2011, 91(5): 629-644.
[7] Shpigelman A, Israeli G, Livney Y D.Thermally-induced protein-polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG[J]. Food Hydrocolloids, 2010, 24(8): 735-743.
[8] 王岳飞, 徐平, 李磊, 等. 茶多酚与几种天然抗氧化物质的协同作用研究[J]. 茶叶科学, 2010, 30(2): 109-114.
[9] Li B, Du W, Jin J, et al. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles[J]. Journal of Agricultural & Food Chemistry, 2012, 60: 3477-3484.
[10] Long T, Ramsburg C A.Encapsulation of nZVI particles using a Gum Arabic stabilized oil-in-water emulsion[J]. Journal of Hazardous Materials, 2011, 189(3): 801-808.
[11] Bing H, Pan C, Yi S, et al. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins[J]. Journal of Agricultural & Food Chemistry, 2008, 56(16): 7451-7458.
[12] 刘锦文, 李红玉, 石瑞君, 等. 高效液相色谱法测定茶多酚中EGCG和ECG的含量[J]. 食品工业科技, 2010, 31(11): 372-374.
[13] 成惠林. 检测细胞活性的MTT方法[J]. 江苏医药, 1996, 22(5): 330-331.
[14] 周建军, 乐秀芳, 韩家娴, 等. 影响MTT方法测定结果的一些因素[J]. 肿瘤, 1994, 14(2): 93-94.
[15] 唐卫生, 王知权. 一种获得完整胞浆的胞质分裂阻滞微核法[J]. 中华劳动卫生职业病杂志, 1993(4): 238-239.
[16] 刘杨, 曹建平, 樊赛军, 等. 青蒿素对人乳腺癌细胞MDA-MB-435辐照后微核的影响研究[J]. 辐射研究与辐射工艺学报, 2009, 27(6): 365-368.
[17] Masunaga S, Ono K, Abe M.A Method for the Selective Measurement of the Radiosensitivity of Quiescent Cells in Solid Tumors: Combination of Immunofluorescence Staining to BrdU and Micronucleus Assay[J]. Radiation Research, 1991, 125(3): 243-247.
[18] 顾祖维, Rayappa C.细胞松弛素B在微核试验中的应用[J]. 毒理学杂志, 1993, 7(2): 105-106, 94.
[19] 向梦龙, 敖琳, 刘晋袆, 等. 胞质分裂阻滞微核细胞组学试验法的研究进展[J]. 癌变·畸变·突变, 2012, 24(3): 241-244.
[20] Fenech M.The in vitro micronucleus technique[J]. Mutat Res, 2000, 455: 81-95.
[21] Schokker E P, Singh H, Pinder D N, et al. Heat-induced aggregation of β-lactoglobulin at pH 2.5 as influenced by ionic strength and protein concentration[J]. International Dairy Journal, 2000, 10(8): 233-240.
[22] Müller R H, Jacobs C, Kayser O.Nanosuspensions as particulate drug formulations in therapy Rationale for development and what we can expect for the future[J]. Adv Drug Deliv Rev, 2001, 47(1): 3-19.
[23] Lestringant P, Guri A, Gülseren I, et al. Effect of Processing on Physicochemical Characteristics and Bioefficacy of beta-Lactoglobulin-Epigallocatechin-3-gallate Complexes[J]. J Agric Food Chem, 2014, 62(33): 8357-8364.