[1] 李玮, 郑子成, 李廷轩, 等. 退耕植茶对川西低山丘陵区土壤有机碳库的影响[J]. 中国农业科学, 2014, 47(8): 1642-1651. [2] 郑子成, 刘敏英, 李廷轩. 不同植茶年限土壤团聚体有机碳的分布特征[J]. 中国农业科学, 2013, 46(9): 1827-1836. [3] Wang H, Yang JP, Yang S H, et al. Effect of a 10℃ -elevated temperature under different water contents on the microbial community in a tea orchard soil[J]. European Journal of Soil Biology, 2014, 62: 113-120. [4] Xue D, Huang X, Yao H, et al. Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils[J]. Journal of Environmental Sciences, 2010, 22(8): 1253-1260. [5] Zhao J, Wu XB, Nie C, et al. Analysis of unculturable bacterial communities in tea orchard soils based on nested PCR-DGGE[J]. World Journal of Microbiology and Biotechnology, 2012, 28: 1967-1979. [6] 杨清平, 毛清黎, 杨新河. 不同生态茶园土壤微生物及脲酶活性研究[J]. 湖北大学学报, 2014, 36(4): 300-306. [7] Wang H, Xu RK, Wang N, et al. Soil acidification of alfisols as influenced by tea cultivation in eastern china[J]. Pedosphere, 2010, 20(6): 799-806. [8] Alekseeva T, Alekseev A, Xu RK, et al. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern china[J]. Environment Geochemistry and Health, 2011, 33: 137-148. [9] 谢少华, 宗良纲, 褚慧, 等. 不同类型生物质材料对酸化茶园土壤的改良效果[J]. 茶叶科学, 2013, 33(3): 279-288. [10] Wang L, Yang XL, Rachel K, et al. Combined use of alkaline slag and rapeseed cake to ameliorate soil acidity in an acid tea garden soil[J]. Pedosphere, 2013, 23(2): 177-184. [11] Li Q, Huang J, Liu S, et al. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar[J]. Proteome Science, 2011, 9: 44. [12] Li B, ZHang F, ZHang LW, et al. Comprehensive suitability evaluation of tea crops using GIS and a modified land ecological suitability evaluation model[J]. Pedosphere, 2012, 22(1): 122-130. [13] 吴克华, 赵卫权, 廖凤林, 等. 基于GIS的贵州省茶园生态适宜性研究[J]. 地球与环境, 2013, 41(3): 296-302. [14] 林郑和, 钟秋生, 陈常颂, 等. 缺氮条件下不同品种茶树叶片光合特性的变化[J]. 茶叶科学, 2013, 33(6): 500-504. [15] 万青, 徐仁扣, 黎星辉. 氮素形态对茶树根系释放质子的影响[J]. 土壤学报, 2013, 50(4): 720-725. [16] Yang YY, Li XH, Ratcliffe RG, et al. Characterization of ammonium and nitrate uptake and assimilation in roots of tea plants[J]. Russian Journal of Plant Physiology, 2013, 60(1): 91-99. [17] 袁祖丽, 李蕴贞, 韩莹等. 不同施氮量及定量氮、磷、钾配比对茶叶香气成分及其形成的影响[J]. 河南农业大学学报, 2012, 46(6): 631-636. [18] 杨亦扬, 马立锋, 黎星辉, 等. 氮素水平对茶树新梢叶片代谢谱及其昼夜变化的影响[J]. 茶叶科学, 2013, 33(6): 491-499. [19] 游小妹, 陈常颂, 钟秋生, 等. 不同用氮量水平对乌龙茶产量、品质的影响[J]. 福建农业学报, 2012, 27(8): 853-856. [20] 苏有健, 廖万有, 丁勇, 等. 不同氮营养水平对茶叶产量和品质的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1430-1436. [21] 赵青华, 孙立涛, 王玉, 等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J]. 植物生理学报, 2014, 50(2): 164-170. [22] 杨娟, 李中林, 邬秀宏, 等. 氮素营养对茶树组培苗生长影响研究[J]. 西南农业学报, 2013, 26(5): 1962-1965. [23] 林郑和, 陈立松, 陈荣冰, 等. 缺磷对茶树幼苗养分吸收的影响[J]. 茶叶科学, 2009, 29(4): 295-300. [24] Debnath A, Barrow NJ, Ghosh D, et al. Diagnosing P status and P requirement of tea (Camellia sinensis L.) by leaf and soil analysis[J]. Plant Soil, 2011, 341(1/2): 309-319. [25] Lin ZH, Chen LS, Chen RB, et al. Root release and metabolism of organic acids in tea plants in response to phosphorus supply[J]. Journal of Plant Physiology, 2011, 168(7): 644-652. [26] Lin ZH, Chen LS, Chen RB, et al. Antioxidant system of tea (Camellia sinensis) leaves in response to phosphorus supply[J]. Acta Physiology Plant, 2012, 34: 2443-2448. [27] 王小平, 罗虹, 刘鹏, 等. 磷对铝氟交互处理下茶树主要生理生化特性的影响[J]. 生态学报, 2009, 29(10): 5434-5441. [28] Lin ZH, Qi YP, Chen RB, et al. Effects of phosphorus supply on the quality of green tea[J]. Food Chemistry, 2012, 130(4): 908-914. [29] Ruan JY, Ma LF, Shi YZ.Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China[J]. Journal of Plant Nutrition Soil Science, 2013, 176(3): 450-459. [30] 林郑和, 钟秋生, 陈常颂, 等. 不同供钾水平对茶树幼苗叶片光合作用的影响[J]. 茶叶科学, 2013, 33(3): 261-267. [31] 林郑和, 钟秋生, 陈常颂, 等. 缺钾对茶树幼苗叶片叶绿素荧光特性的影响[J]. 植物营养与肥料学报, 2012, 18(4): 974-980. [32] 边金霖, 董迹芬, 林杰, 等. 钾肥施用对茶鲜叶香气组分的影响[J]. 福建农林大学学报: 自然科学版, 2012, 41(6): 601-607. [33] 孙婷, 刘鹏, 郑人卫, 等. 茶树体内铝形态及铝累积特性[J]. 作物学报, 2009, 35(10): 1909-1915. [34] Mukhopadyay M, Bantawa P, Das A, et al. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 2012, 25(6): 1141-1154. [35] 刘腾腾, 郜红建, 宛晓春, 等. 铝对茶树根细胞膜透性和根系分泌有机酸的影响[J]. 茶叶科学, 2011, 31(5): 458-462. [36] 段小华, 邓泽元, 胡小飞, 等. 模拟酸雨和外源铝对茶树铝及一些营养元素吸收积累的影响[J]. 农业环境科学学报, 2010, 29(10):1936-1942. [37] 段小华, 胡小飞, 邓泽元, 等. 钙对铝胁迫下茶树钙铝及部分矿质营养吸收积累的影响[J]. 江西师范大学学报: 自然科学版, 2012, 36(3):321-325. [38] 于翠平, 潘志强, 陈杰, 等. 铝对茶树生长与生理特性影响的研究[J]. 植物营养与肥料学报, 2012, 18(1): 182-187. [39] 林郑和, 陈荣冰. 铝对茶树叶片抗氧化系统的影响[J]. 热带作物学报, 2009, 30(5): 598-602. [40] Hajiboland R, Bahrami-Rad S, Bastani S, et al. Boron re-translocation in tea [(Camellia sinensis (L.) O. Kuntze)] plants[J]. Acta Physiologiae Plantarum, 2013, 35(8): 2373-2381. [41] 段小华, 胡小飞, 邓泽元, 等. 模拟酸雨和铝添加对茶树生长及生理生化特性的影响[J]. 江西农业大学学报, 2012, 34(2): 304-310. [42] 肖宏儒, 梅松, 丁文芹, 等. 多功能茶园管理机节能高效作业技术研究[J]. 中国农机化学报, 2013, 34(6): 211-215. [43] 毛平生, 阮建云, 李延升, 等. 茶园不同施肥方式对茶树养分和鲜叶品质相关成分的影响[J]. 热带农业科学, 2014, 34(3): 4-11. [44] 毛平生, 阮建云, 李延升, 等. 茶园不同施肥方式对土壤化学性质的影响[J]. 江西农业学报, 2014, 26(5): 1-5. [45] 丁明来, 傅德龙, 孙立涛. 水肥耦合条件与茶树生长关系组成分析[J]. 中国农学通报, 2013, 29(31): 137-141. [46] 陈永明, 田媛. 滴灌沼液对茶园土壤-茶树氮磷含量影响研究[J]. 环境科学与技术, 2012, 35(61): 49-52. [47] 唐颢, 吴家尧, 黎健龙, 等. 茶园滴灌施肥的增产提质及土壤养分效应研究[J]. 茶叶科学, 2013, 33(1): 85-90. [48] 刘腾飞, 张丽霞, 韩晓阳. 茶树专用控释肥在幼龄茶园的肥效研究[J]. 山东农业科学, 2011(1): 47-52. [49] 刘腾飞, 张丽霞, 张民, 等. 控释肥对茶园生态环境及茶叶产量和品质的影响[J]. 山东农业科学, 2011, 64(3): 54-60. [50] 付乃峰, 洪永聪, 丁兆堂. 控释肥与尿素配施对茶园土壤碱解氮含量和茶叶品质的影响[J]. 西北农业学报, 2010, 19(4): 106-109. [51] Han WY, Xu JM, Wei K, et al. Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China[J]. Environmental Earth Sciences, 2013, 70(6): 2495-2500. [52] 黄莹, 李雅颖, 姚槐应. 强酸性茶园土壤中添加不同肥料氮后N2O释放量变化[J]. 植物营养与肥料学报, 2013, 19(6): 1533-1538. [53] Huang Y, Li YY, Yao HY.Nitrate enhances N2O emission more than ammonium in a highly acidic soil[J]. Journal of Soils and Sediments, 2014, 4: 146-154. [54] Zhu TB, Zhang JB, Meng TZ, et al. Tea plantation destroys soil retention of NO3- and increases N2O emissions in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73: 106-114. [55] 林衣东, 韩文炎. 不同土壤N2O排放的研究[J]. 茶叶科学, 2009, 29(6): 456-464. [56] Li Y, Fu XQ, Liu XL, et al. Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical central China[J]. Geoderma, 2013, 193: 1-12. [57] Fu XQ, Li Y, Su WJ, et al. Annual dynamics of N2O emissions from a tea fieldin southern subtropical China[J]. Plant Soil Environment, 2012, 58(8): 373-378. [58] Yamamoto A, Akiyama H, Naokawa T, et al. Lime-nitrogen application affects nitrification, denitrification, and N2O emission in an acidic tea soil[J]. Biology and Fertility of Soils, 2014, 50(1): 53-62. [59] Kwack Y, Kobayashi K.Application of DNDC model to estimate N2O emissions from green tea fields in Japan[J]. Journal of Crop Science and Biotechnology, 2011, 14(2): 157-162. [60] Tolrà R, Vogel-Mikuš K, Hajiboland R, et al. Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172. [61] Zhang L, Li Q, Ma L, et al. Characterization of fluoride uptake by roots of tea plants [(Camellia sinensis (L.) O. Kuntze)][J]. Plant and soil, 2013, 366(1/2): 659-669. [62] Bernard S M, Habash D Z.The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling[J]. New Phytologist, 2009, 182(3): 608-620. [63] Rana N K, Mohanpuria P, Yadav S K.Cloning and characterization of a cytosolic glutamine synthetase from Camellia sinensis (L.) O. Kuntze that is upregulated by ABA, SA, and H2O2 [J]. Molecular Biotechnology, 2008, 39(1): 49-56. [64] Rana N K, Mohanpuria P, Yadav S K.Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress[J]. Biologia Plantarum, 2008, 52(2): 361-364. [65] Rana N K, Mohanpuria P, Kumar V, et al. A CsGS is regulated at transcriptional level during developmental stages and nitrogen utilization in Camellia sinensis (L.) O. Kuntze[J]. Molecular Biology Reports, 2010, 37(2): 703-710. [66] Li Q, Huang J, Liu S, et al. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar[J]. Proteome Science, 2011, 9: 44. [67] Deng WW, Fei Y, Wang S, et al. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings[J]. Plant Growth Regulation, 2013, 71(3): 295-299. [68] Ku K M, Choi J N, Kim J, et al. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(1): 418-426. [69] Hong G, Wang J, Zhang Y, et al. Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry, 2014, 78: 49-52. [70] Wang YS, Gao L P, Shan Y, et al. Influence of shade on flavonoid biosynthesis in tea [(Camellia sinensis (L.) O. Kuntze)][J]. Scientia Horticulturae, 2012, 141: 7-16. [71] Das A, Mondal T K.Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis)[J]. American Journal of Plant Sciences, 2010, 1(2): 77. [72] Prabu G R, Mandal A K A. Computational Identification of miRNAs and Their Target Genes from Expressed Sequence Tags of Tea (Camellia sinensis)[J]. Genomics, Proteomics & Bioinformatics, 2010, 8(2): 113-121. [73] Mohanpuria P, Yadav S K.Characterization of novel small RNAs from tea (Camellia sinensis L.)[J]. Molecular Biology Reports, 2012, 39(4): 3977-3986. [74] Jeyaraj A, Chandran V, Gajjeraman P.Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze][J]. Plant Cell Reports, 2014, 1-17. [75] Lu YF, Yang HM, MA LY, et al. Application of Pb isotopic tracing technique to constraining the source of Pb in the West Lake Longjing tea[J]. Chinese Journal of Geochemistry, 2011, 30: 554-562. [76] Othman A, Al-Ansi S, Al-Tufail M.Determination of lead in saudi arabian imported green tea by ICP-MS[J]. Journal of Chemistry, 2012, 9(1): 79-82. [77] Lv HP, Lin Z, Tan JF, et al. Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea[J]. Food Research International, 2013, 53: 938-944. [78] 要媛, 王宇梅, 贺敏. 包头市2010-2013年市售食品中重金属铅、镉、铝污染状况调查分析[J]. 疾病监测与控制杂志, 2014, 8(2): 70-73. [79] 石元值,韩文炎,马立锋,等. 茶叶中稀土氧化物总量的现状及其溶出特性研究[J]. 茶叶科学, 2011, 31(4): 349-354. [80] Zhou LQ, Zhou S, Zhu YW.Assessment and mapping of heavy metals pollution in tea plantation soil of zhejiang province based on Gis[J]. Computer and Computing Technologies in Agriculture II, 2009, 293(1): 69-78. [81] 雷莹. 宁德市茶园土壤重金属分布特征及评价[J]. 宁德师范学院学报: 自然科学版, 2012, 24(2): 138-141. [82] 张清海, 龙章波, 林绍霞, 等. 贵州云雾茶园土壤高含量重金属和砷在茶叶中的积累与浸出特征[J]. 食品科学, 2013, 34(8): 212-215. [83] 李仪, 章明奎. 杭州西郊茶园土壤重金属的积累特点与来源分析[J]. 广东微量元素科学, 2010, 17(2): 18-25. [84] Yaylalı-Abanuz G, Tüysüz N.Heavy metal contamination of soils and tea plants in the eastern Black Sea region, NE Turkey[J]. Environmental Earth Science, 2009, 59: 131-144. [85] Duan DC, Wang M, Yu MG, et al. Does the compositional change of soil organic matter in the rhizosphere and bulk soil of tea plants induced by tea polyphenols correlate with Pb bioavailability?[J]. Journal of Soils and Sediments, 2014, 14(2): 394-406. [86] 陈磊, 林锻炼, 高志鹏, 等. 稀土元素在茶园土壤和乌龙茶中的分布特征[J]. 福建农林大学学报:自然科学版,2011,40(6): 595-601. [87] 林荣溪, 陈磊, 谢承昌, 等. 福建乌龙茶稀土来源初探[J]. 中国茶叶, 2010, 32(11): 10-11. |