茶叶科学 ›› 2025, Vol. 45 ›› Issue (3): 379-392.
陈丹1, 王姗姗1, 张洁茹2, 郑芹芹1,*, 张相春1,*, 陈红平1
收稿日期:
2025-01-17
修回日期:
2025-03-14
出版日期:
2025-06-15
发布日期:
2025-06-18
通讯作者:
*zhengqinqin@tricaas.com;zhangxc@tricaas.com
作者简介:
陈丹,女,硕士研究生,主要从事茶多酚健康方面的研究。
基金资助:
CHEN Dan1, WANG Shanshan1, ZHANG Jieru2, ZHENG Qinqin1,*, ZHANG Xiangchun1,*, CHEN Hongping1
Received:
2025-01-17
Revised:
2025-03-14
Online:
2025-06-15
Published:
2025-06-18
摘要: 茶多酚是茶叶里含量最高的活性成分,具有多种生理功能。目前对茶多酚的研究历史缺乏系统性总结。系统梳理了茶多酚的发现、命名及功能应用的事件,并简要论述其在免疫调控、抗炎和氧化应激等方面的健康功效以及发挥活性的多酚羟基结构基础,为茶多酚在不同领域的应用研究提供支撑。此外,对新型茶多酚纳米生物材料解决茶多酚稳定性差、生物利用度低等难题的研究进行了概述。新型茶多酚纳米生物材料具有高稳定性、安全性和多功能的特点,有望推动茶多酚的进一步应用。
中图分类号:
陈丹, 王姗姗, 张洁茹, 郑芹芹, 张相春, 陈红平. 茶多酚健康效应研究进程[J]. 茶叶科学, 2025, 45(3): 379-392.
CHEN Dan, WANG Shanshan, ZHANG Jieru, ZHENG Qinqin, ZHANG Xiangchun, CHEN Hongping. Research Progress on Health Effects of Tea Polyphenols[J]. Journal of Tea Science, 2025, 45(3): 379-392.
[1] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003. [2] 阮宇成. 茶多酚的组成与茶叶品质[J]. 中国茶叶, 1979, 1(1): 2-5. Ruan Y C.The composition of tea polyphenols and tea quality[J]. China Tea, 1979, 1(1): 2-5. [3] 陈椽. 茶业通史[M]. 2版. 北京: 中国农业出版社, 2008. Chen C.A general history of tea industry [M]. 2nd ed. Beijing: China Agriculture Press, 2008. [4] 阮宇成. 茶叶提取物中茶多酚测定值的商榷[J]. 中国茶叶, 1995, 17(3): 20-21. Ruan Y C.Discussion on the determination values of tea polyphenols in tea extracts[J]. China Tea, 1995, 17(3): 20-21. [5] 阮宇成. 茶叶保健功能的研究及其发展前途[J]. 茶叶, 1994(1): 10-12. Ruan Y C.Research on the health benefits of tea and its development prospect[J]. Journal of Tea, 1994(1): 10-12. [6] 于钦明, 郑淇, 杨玉赫. 从“神农尝百草”认知茶的药用价值及其对中医药文化发展的经验研究[J]. 福建茶叶, 2021, 43(9): 41-42. Yu Q M, Zheng Q, Yang Y H.Research on the medicinal value of tea recognized from “Shennong tasting a hundred herbs” and its experience in the development of traditional chinese medicine culture[J]. Tea in Fujian, 2021, 43(9): 41-42. [7] 阮宇成. 近三年茶多酚在抗氧化、抗癌研究的简况[J]. 茶叶, 1996(4): 36-37. Ruan Y C.A Brief situation of tea polyphenols in antioxidant and anti-cancer research in the past three years[J]. Journal of Tea, 1996(4): 36-37. [8] 阮宇成. 谈谈茶叶开发问题[J]. 福建茶叶, 2002(3): 28. Ruan Y C.On the issue of tea development[J]. Tea in Fujian, 2002(3): 28. [9] 鲍军, 洪允祥, 楼建国, 等. 茶黄烷醇类防治动脉粥样硬化的实验研究[J]. 南京中医学院学报, 1989(3): 35-37, 58. Bao J, Hong Y X, Lou J G, et al.Experimental study on the prevention and treatment of atherosclerosis by tea flavanols[J]. Journal of Nanjing University of Traditional Chinese Medicine, 1989(3): 35-37, 58. [10] 沈新南, 陆瑞芳, 唐金发, 等. 茶多酚降血脂抗血栓作用的实验研究[J]. 营养学报, 1993(2): 147-151. Shen X N, Lu R F, Tang J F, et al.Experimental study on the hypolipidemic and antithrombotic effects of tea polyphenols[J]. Acta Nutrimenta Sinica, 1993(2): 147-151. [11] 杨贤强, 贾之慎, 沈生荣, 等. 茶多酚类毒理学试验及其评价[J]. 浙江农业大学学报, 1992, 18(1): 26-32. Yang X Q, Jia Z S, Shen S R, et al.Toxicological tests and evaluation of tea polyphenols[J]. Journal of Zhejiang Agricultural University, 1992, 18(1): 26-32. [12] 杨贤强, 沈生荣, 贾之慎, 等. 茶多酚(TP)清除自由基和抗氧化作用的机理及应用基础研究[J]. 中国茶叶加工, 1994(1): 41-44. Yang X Q, Shen S R, Jia Z S, et al.Mechanism and applied fundamental research on free radical scavenging and antioxidant effects of tea polyphenols (TP)[J]. China Tea Processing, 1994(1): 41-44. [13] 陈炳银, 陈红平, 田宝明, 等. 茶多酚作为食品添加剂的应用研究进展[J]. 中国茶叶, 2024, 46(11): 33-44. Chen B Y, Chen H P, Tian B M, et al.Research progress on the application of tea polyphenols as food additives[J]. China Tea, 2024 ,46(11): 33-44. [14] 贾之慎, 杨贤强. 茶多酚抗氧化作用的研究与应用[J]. 食品科学, 1990(11): 1-5. Jia Z S, Yang X Q.Research and application of antioxidant effects of tea polyphenols[J]. Food Science, 1990(11): 1-5. [15] 全国食品发酵标准化中心、卫生部食品卫生监督检验所. 食品添加剂茶多酚: QB 2154—95[S]. 北京: 中国标准出版社, 1995. National Center for Standardization of Food Fermentation, Institute of Food Hygiene Supervision and Inspection, Ministry of Health. Food additive—tea polyphenols: QB 2154—95 [S]. Beijing: China Standard Press, 1995. [16] 杨贤强, 王岳飞, 陈留记. 茶多酚化学[M]. 上海科学技术出版社, 2003. Yang X Q, Wang Y F, Chen L J.Tea polyphenol chemistry [M]. Shanghai: Shanghai Science and Technology Press, 2003. [17] 陈宗懋. 茶叶有效成分首次获美国FDA批准为处方药上市[J]. 中国茶叶, 2007, 29(6): 19. Chen Z M.The active ingredients of tea were approved by the US FDA for the first time as prescription drugs for marketing[J]. China Tea, 2007, 29(6): 19. [18] 全国茶叶标准化技术委员会(SAC/TC 339). 茶制品-第2部分: 茶多酚: GB/T 31740.2—2015[S]. 北京: 中国标准出版社, 2015. National Tea Standardization Technical Committee (SAC/TC 339). Tea products—Part 2: tea polyphenols: GB/T 31740.2—2015 [S]. Beijing: China Standard Press, 2015. [19] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品添加剂茶多酚(又名维多酚): GB 1886.211—2016 [S]. 北京: 中国标准出版社, 2016. National Health and Family Planning Commission of the People's Republic of China. National Food Safety Standard - Food additive —tea polyphenols (also known as vitamin polyphenols): GB 1886.211—2016 [S]. Beijing: China Standard Press, 2016. [20] Sun J, Dong S X, Li J, et al.A comprehensive review on the effects of green tea and its components on the immune function[J]. Food Science and Human Wellness, 2022, 11(5): 1143-1155. [21] Chen G J, Chen R C, Chen D, et al.Tea polysaccharides as potential therapeutic options for metabolic diseases[J]. Journal of Agricultural and Food Chemistry, 2018, 67(19): 5350-5360. [22] de Araújo F F, de Paulo Farias D, Neri-Numa I A, et al. Polyphenols and their applications: an approach in food chemistry and innovation potential[J]. Food Chemistry, 2021, 338: 127535. doi: 10.1016/j.foodchem.2020.127535. [23] Shi J, Yang G Z, You Q S, et al.Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001—2021)[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(20): 4757-4784. [24] Kawai K, Tsuno N H, Kitayama J, et al.Catechin inhibits adhesion and migration of peripheral blood B cells by blocking CD11b[J]. Immunopharmacology and Immunotoxicology, 2011, 33(2): 391-397. [25] Hyun K H, Gil K C, Kim S G, et al.Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model[J]. Journal of Food Science, 2019, 84(4): 920-930. [26] Liu D D, Li P P, Song S S, et al.Pro-apoptotic effect of epigallo-catechin-3-gallate on B lymphocytes through regulating BAFF/PI3K/Akt/mTOR signaling in rats with collagen-induced arthritis[J]. European Journal of Pharmacology, 2012, 690(1/2/3): 214-225. [27] Zhang Y T, Cheng L, Liu Y N, et al.The intestinal microbiota links tea polyphenols with the regulation of mood and sleep to improve immunity[J]. Food Reviews International, 2023, 39(3): 1485-1498. [28] Zhang R, Liu L L, Wang X W, et al.Dietary tea polyphenols induce changes in immune response and intestinal microbiota in Koi carp, cryprinus carpio[J]. Aquaculture, 2020, 516: 734636. doi: 10.1016/j.aquaculture.2019.734636. [29] Liu Z B, de Bruijn W J C, Bruins M E, et al. Reciprocal interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro[J]. Journal of Agricultural and Food Chemistry, 2020, 68(36): 9804-9815. [30] Zhou F, Li Y L, Zhang X, et al.Polyphenols from Fu brick tea reduce obesity via modulation of gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function[J]. Journal of Agricultural and Food Chemistry, 2021, 69(48): 14530-14543. [31] 史霄燕. 茶多酚的抗氧化作用及机制[J]. 国外医学药学分册, 1998(4): 196-199. Shi X Y.The antioxidant effect and mechanism of tea polyphenols[J]. Foreign Medical Sciences Section on Pharmacy, 1998(4): 196-199. [32] Sies H.Biochemistry of oxidative stress[J]. Angewandte Chemie International Edition in English, 1986, 25(12): 1058-1071. [33] Qi G Y, Mi Y S, Fan R, et al.Tea polyphenols ameliorate hydrogen peroxide-and constant darkness-triggered oxidative stress via modulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and mice liver[J]. RSC Advances, 2017, 7(51): 32198-32208. [34] Qi G Y, Mi Y S, Wang Y W, et al.Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain[J]. Food & Function, 2017, 8(12): 4421-4432. [35] Wan C P, Hu X M, Li M X, et al.Potential protective function of green tea polyphenol EGCG against high glucose-induced cardiac injury and aging[J]. Journal of Functional Foods, 2023, 104: 105506. doi: 10.1016/j. jff. 2023.105506. [36] Yan Z M, Zhong Y Z, Duan Y H, et al.Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition, 2020, 6(2): 115-123. [37] Trisha A T, Shakil M H, Talukdar S, et al.Tea polyphenols and their preventive measures against cancer: current trends and directions[J]. Foods, 2022, 11(21): 3349. doi: 10.3390/foods11213349. [38] Shirakami Y, Shimizu M.Possible mechanisms of green tea and its constituents against cancer[J]. Molecules, 2018, 23(9): 2284. doi: 10.3390/molecules23092284. [39] Kaltschmidt B, Greiner J F W, Kadhim H M, et al. Subunit-specific role of NF-κB in cancer[J]. Biomedicines, 2018, 6(2): 44. doi: 10.3390/biomedicines6020044. [40] Masuda M, Suzui M, Lim J T E, et al. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction[J]. Journal of Experimental Therapeutics and Oncology, 2002, 2(6): 350-359. [41] Fujiki H, Suganuma M, Okabe S, et al.Cancer inhibition by green tea[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 402(1/2): 307-310. [42] Truong V L, Jeong W S.Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness, 2022, 11(3): 502-511. [43] Chen Y, Cheng S, Dai J G, et al.Molecular mechanisms and applications of tea polyphenols: a narrative review[J]. Journal of Food Biochemistry, 2021, 45(10): e13910. doi: 10.1111/jfbc.13910. [44] Caban M, Lewandowska U.Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases[J]. Journal of Functional Foods, 2022, 95: 105181. doi: 10.1016/j.jff.2022.105181. [45] Song Z Y, Zhang X, Hong M Y, et al.Oolong tea polyphenols affect the inflammatory response to improve cognitive function by regulating gut microbiota[J]. Journal of Functional Foods, 2023, 105: 105584. doi: 10.1016/j.jff.2023.105584. [46] Stillman A, Connors M, Miller M, et al.P-145 oral administration of egcg, a green tea polyphenol, both suppresses and rescues mice from dss-induced colitis[J]. Inflammatory Bowel Diseases, 2016, 22: S54. doi: 10.1097/01.MIB.0000480274.14376.a7. [47] Wu Z H, Huang S M, Li T T, et al.Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9: 1-22. [48] Li J, Chen C F, Yang H, et al.Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice[J]. Food Research International, 2021, 141: 110153. doi: 10.1016/j.foodres.2021.110153. [49] Cardona F, Andrés-Lacueva C, Tulipani S, et al.Benefits of polyphenols on gut microbiota and implications in human health[J]. The Journal of Nutritional Biochemistry, 2013, 24(8): 1415-1422. [50] Song Z Y, Ho C T, Zhang X.Gut microbiota mediate the neuroprotective effect of oolong tea polyphenols in cognitive impairment induced by circadian rhythm disorder[J]. Journal of Agricultural and Food Chemistry, 2024, 72(21): 12184-12197. [51] Wen J J, Li M Z, Chen C H, et al.Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota[J]. Food Chemistry, 2023, 404: 134591. doi: 10.1016/j.foodchem.2022.134591. [52] Yan R N, Ho C T, Zhang X.Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota[J]. Food Science and Human Wellness, 2022, 11(3): 494-501. [53] Yan R N, Ho C T, Zhang X.Interaction between tea polyphenols and intestinal microbiota in host metabolic diseases from the perspective of the gut-brain axis[J]. Molecular Nutrition & Food Research, 2020, 64(14): 2000187. doi: 10.1002/mnfr.202000187. [54] Zhang Y T, Cheng L, Liu Y N, et al.The intestinal microbiota links tea polyphenols with the regulation of mood and sleep to improve immunity[J]. Food Reviews International, 2023, 39(3): 1485-1498. [55] Sun Q Y, Cheng L, Zhang X, et al.The interaction between tea polyphenols and host intestinal microorganisms: an effective way to prevent psychiatric disorders[J]. Food & Function, 2021, 12(3): 952-962. [56] Selma M V, Espin J C, Tomas-Barberan F A. Interaction between phenolics and gut microbiota: role in human health[J]. Journal of Agricultural and Food Chemistry, 2009, 57(15): 6485-6501. [57] Kawabata K, Yoshioka Y, Terao J.Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols[J]. Molecules, 2019, 24(2): 370. doi: 10.3390/molecules24020370. [58] Rowland I, Gibson G, Heinken A, et al.Gut microbiota functions: metabolism of nutrients and other food components[J]. European Journal of Nutrition, 2018, 57: 1-24. [59] Chen H D, Sang S M.Biotransformation of tea polyphenols by gut microbiota[J]. Journal of Functional Foods, 2014, 7: 26-42. [60] Guo J, Li K, Lin Y J, et al.Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases[J]. Frontiers in Nutrition, 2023, 10: 1202378. doi: 10.3389/fnut.2023.1202378. [61] Shaukat H, Ali A, Zhang Y, et al.Tea polyphenols: extraction techniques and its potency as a nutraceutical[J]. Frontiers in Sustainable Food Systems, 2023, 7: 1175893. doi: 10.3389/fsufs.2023.1175893. [62] Yee Y K, Koo M W L. Anti-helicobacter pylori activity of Chinese tea: in vitro study[J]. Alimentary Pharmacology & Therapeutics, 2000, 14(5): 635-638. [63] Mhatre S, Srivastava T, Naik S, et al.Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review[J]. Phytomedicine, 2021, 85: 153286. doi: 10.1016/j.phymed.2020.153286. [64] Yang C S, Lambert J D, Sang S.Antioxidative and anti-carcinogenic activities of tea polyphenols[J]. Archives of Toxicology, 2009, 83: 11-21. [65] Grzesik M, Naparło K, Bartosz G, et al.Antioxidant properties of catechins: comparison with other antioxidants[J]. Food Chemistry, 2018, 241: 480-492. [66] Rice-evans C A, Miller N J, Bolwell P G, et al. The relative antioxidant activities of plant-derived polyphenolic flavonoids[J]. Free Radical Research, 1995, 22(4): 375-383. [67] Benzie I F F, Szeto Y T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay[J]. Journal of Agricultural and Food Chemistry, 1999, 47(2): 633-636. [68] Ouyang J, Zhu K, Liu Z H, et al.Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020(1): 9723686. doi: 10.1155/2020/9723686. [69] Forester S C, Lambert J D.The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention[J]. Molecular Nutrition & Food Research, 2011, 55(6): 844-854. [70] 俞蓉欣, 郑芹芹, 陈红平, 等. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4) : 447-462. Yu R X, Zheng Q Q, Chen H P, et al.Recent advances in catechin biomedical nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462. [71] Peng H B, Yao F B, Zhao J X, et al.Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials[J]//Exploration. 2023, 3(2): 20220115. doi: 10.1002/EXP.20220115. [72] Cao Z Y, Liu J, Yang X Z.Deformable nanocarriers for enhanced drug delivery and cancer therapy[J]//Exploration. 2024, 4(5): 20230037. doi: 10.1002/EXP.20230037. [73] 徐伟, 俞蓉欣, 张相春, 等. 多酚自组装抗菌生物材料的构建及其应用进展[J]. 茶叶科学, 2024, 44(1): 1-15. Xu W, Yu R X, Zhang X C, et al.Construction of polyphenol self-assembly antibacterial biomaterials and progress in their applications[J]. Journal of Tea Science, 2024, 44(1): 1-15. [74] Lin X R, Chen Z Z, Zhang Y Y, et al.Comparative characterisation of green tea and black tea cream: physicochemical and phytochemical nature[J]. Food Chemistry, 2015, 173: 432-440. [75] Zhu R Y, Chen Z, Lü H L, et al.Another thread to uncover the aging mystery of white tea: focusing on the natural nanoparticles in tea infusion[J]. Food Chemistry, 2023, 429: 136838. doi: 10.1016/j.foodchem.2023.136838. [76] Han H, Ke L J, Xu W, et al.Incidental nanoparticles in black tea alleviate DSS-induced ulcerative colitis in BALB/c mice[J]. Food & Function, 2023, 14(18): 8420-8430. [77] Chen G C, Yi Z, Chen X Y, et al.Polyphenol nanoparticles from commonly consumed tea for scavenging free radicals, stabilizing pickering emulsions, and inhibiting cancer cells[J]. ACS Applied Nano Materials, 2020, 4(1): 652-665. [78] Wu X M, Wang Y J, Wang D X, et al.Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo[J]. Food & Function, 2024, 15(4): 2181-2196. [79] Hammad A M, Alzaghari L F, Alfaraj M, et al.Green tea polyphenol nanoparticles reduce anxiety caused by tobacco smoking withdrawal in rats by suppressing neuroinflammation[J]. Toxics, 2024, 12(8): 598. doi: 10.3390/toxics12080598. [80] Ejima H, Richardson J J, Liang K, et al.One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157. [81] Yu R X, Chen H P, He J, et al.Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing[J]. Advanced Materials, 2024, 36(6): 2307680. doi: 10.1002/adma.202307680. [82] Wang H, Tang C, Xiang Y X, et al.Tea polyphenol-derived nanomedicine for targeted photothermal thrombolysis and inflammation suppression[J]. Journal of Nanobiotechnology, 2024, 22(1): 146. doi: 10.1186/s12951-024-02446-z. [83] Wu Z, Zhang P, Yue J, et al.Tea polyphenol nanoparticles enable targeted siRNA delivery and multi-bioactive therapy for abdominal aortic aneurysms[J]. Journal of Nanobiotechnology, 2024, 22(1): 471. doi: 10.1186/s12951-024-02756-2. [84] Guo X, Liu H Y, Hou RY, et al.Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis[J]. International Journal of Biological Macromolecules, 2024: 137463. doi: 10.1016/j.ijbiomac.2024.137463. |
[1] | 唐芷琦, 秦寒傲, 夏宁, 滕建文, 黄丽, 欧筱瑄, 陈丽萍, 韦玮, 王瑞. 渥堆发酵对六堡茶低聚糖的化学组成及抗氧化活性影响[J]. 茶叶科学, 2025, 45(3): 509-521. |
[2] | 程海燕, 屠琳玥, 陈琳, 徐安安, 谢亨通, 徐平. 茶叶萎凋过程中氨基酸和多酚在叶茎内的时空变化特征[J]. 茶叶科学, 2025, 45(2): 303-317. |
[3] | 许婧, 黄友谊, 黄进, 李春雷. 茶叶不同提取物及不同茶叶对结核分枝杆菌抑制作用的研究[J]. 茶叶科学, 2024, 44(2): 341-349. |
[4] | 李焱, 林泳峰, 刘文美, 邹泽华, 刘光明, 刘庆梅. 茶多糖研究的现状与发展趋势[J]. 茶叶科学, 2023, 43(4): 447-459. |
[5] | 盛政, 杜文凯, 王崇崇, 张博安, 张海华, 杜琪珍. 茶多酚对茶食品中还原糖检测方法的影响[J]. 茶叶科学, 2023, 43(4): 567-575. |
[6] | 周继红, 陈蔚, 丁乐佳, 王岳飞. EGCG改善高果糖饮食小鼠代谢紊乱的作用与机制研究[J]. 茶叶科学, 2023, 43(3): 399-410. |
[7] | 陈薛, 左欣欣, 徐安安, 徐平, 王岳飞. 不同茶树品种鲜叶多糖的理化性质和抗氧化活性比较研究[J]. 茶叶科学, 2022, 42(6): 806-818. |
[8] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[9] | 杨高中, 彭群华, 张悦, 施江, 林智, 吕海鹏. 厌氧处理对不同类型茶叶的氨基酸组成及生物活性的影响[J]. 茶叶科学, 2022, 42(2): 222-232. |
[10] | 马冰凇, 王佳菜, 徐成成, 任小盈, 马存强, 周斌星. 不同仓储期普洱茶(生茶)中酚类成分差异及其对体外抗氧化能力的影响[J]. 茶叶科学, 2022, 42(1): 51-62. |
[11] | 周少锋, 乾云菲, 赵真, 陈暄, 黎星辉. 不同发酵程度茶叶对茶垢形成的影响[J]. 茶叶科学, 2022, 42(1): 76-86. |
[12] | 吴鑫, 宋飞虎, 裴永胜, 朱冠宇, 姜乐兵, 宁文楷, 李臻峰, 刘本英. 基于机器视觉的茶叶微波杀青中品质变化与预测研究[J]. 茶叶科学, 2021, 41(6): 854-864. |
[13] | 焦海珍, 邵陈禹, 陈建姣, 张晨禹, 陈佳豪, 李云飞, 沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化[J]. 茶叶科学, 2021, 41(5): 695-704. |
[14] | 王盛琳, 杨崇山, 刘中原, 柳善建, 董春旺. 基于电特性的红茶发酵中茶多酚含量快速检测方法[J]. 茶叶科学, 2021, 41(2): 251-260. |
[15] | 卢莉, 程曦, 张渤, 沈小霞, 刘艳, 熊丽, 袁潇, 李远华, 黎星辉. 小种红茶茶多酚和咖啡碱近红外定量分析模型的建立[J]. 茶叶科学, 2020, 40(5): 689-695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|