[1] 刘声传, 陈亮. 茶树耐旱机理及抗旱节水研究进展[J]. 茶叶科学, 2014, 34(2): 111-121. Liu S C, Chen L.Research advances on the drought-resistance mechanism and strategy of tea plant[J]. Journal of Tea Science, 2014, 34(2): 111-121. [2] Chaeikar S S, Marzvan S, Khiavi S J, et al.Changes in growth, biochemical, and chemical characteristics and alteration of the antioxidant defense system in the leaves of tea clones (Camellia sinensis L.) under drought stress[J]. Scientia Horticulturae, 2020, 265: 109257. doi: 10.1016/j.scienta.2020.109257. [3] 牛素贞, 宋秦飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37(21): 7333-7341. Niu S Z, Song Q F, Fan W G, et al.Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7333-7341. [4] 王铭涵, 丁玎, 张晨禹, 等. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学, 2020, 40(4): 478-491. Wang M H, Ding D, Zhang C Y, et al.Effects of drought stress on the growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science, 2020, 40(4): 478-491. [5] 田永辉, 梁远发, 魏杰, 等. 灾害性气候对茶树的影响[J]. 贵州农业科学, 2003, 31(2): 20-23. Tian Y H, Liang Y F, Wei J, et al.Effect of disastrous climate on tea trees[J]. Guizhou Agricultural Sciences, 2003, 31(2): 20-23. [6] 柯玉琴, 庄重光, 何华勤, 等. 不同灌溉处理对铁观音茶树光合作用的影响[J]. 应用生态学报, 2008(10): 2132-2136. Ke Y Q, Zhuang C G, He H Q, et al.Effects of different irrigation treatments on photosynthesis of Tieguanyin tea plants[J]. Journal of Applied Ecology, 2008(10): 2132-2136. [7] Gasulla F, Vom Dorp K, Dombrink I, et al.The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach[J]. The Plant Journal, 2013, 75(5): 726-741. [8] Liu X Y, Ouyang L L, Zhou Z G.Phospholipid: diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress[J]. Scientific Reports, 2016, 6(18): 26610. doi: 10.1038/srep26610. [9] Fan J L, Yan C S, Zhang X B, et al.Dual role for phospholipid: diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves[J]. Plant Cell, 2013, 25(9): 3506-3518. [10] Mueller S P, Unger M, Guender L, et al.Phospholipid: diacylglycerol acyltransferase-mediated triacylglycerol synthesis augments basal thermotolerance[J]. Plant Physiology, 2017, 175(1): 486-497. [11] Demski K, Łosiewska A, Jasieniecka-Gazarkiewicz K, et al.Phospholipid: diacylglycerol acyltransferase1 overexpression delays senescence and enhances post-heat and cold exposure fitness[J]. Front Plant Science, 2020, 11: 611897. doi: 10.3389/fpls.2020.611897. [12] Yuan L X, Mao X, Zhao K, et al.Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses[J]. Biology Open, 2017, 6(7): 1024-1034. [13] Qiu S, Zhang J, He J Q, et al.Overexpression of GmGolS2-1, a soybean galactinol synthase gene, enhances transgenic tobacco drought tolerance[J]. Plant Cell Tissue Organ Culture PCTOC, 2020, 143(3): 507-516. [14] Sun X D, Lian H F, Liu X C, et al.The garlic NF-YC gene, AsNFYC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco[J]. Protoplasma, 2017, 254(3): 1353-1366. [15] Yoon K, Han D, Li Y, et al.Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii[J]. Plant Cell, 2012, 24: 3708-3724. [16] Higashi Y, Okazaki Y, Myouga F, et al.Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana[J]. Scientific Reports, 2015, 5: 10533. doi: 10.1038/srep10533. [17] Hernández M L, Moretti S, Sicardo M D, et al.Distinct physiological roles of three phospholipid: diacylglycerol acyltransferase genes in olive fruit with respect to oil accumulation and the response to abiotic stress[J]. Frontiers in Plant Science, 2021, 12: 751959. doi: 10.3389/fpls.2021.751959. [18] 徐赫, 潘丽娟, 陈娜, 等. 磷脂二酰甘油酰基转移酶(PDAT)基因的克隆与表达分析[J]. 花生学报, 2018, 47(4): 33-40, 54. Xu H, Pan L J, Chen N, et al.Cloning and expression analysis of two phospholipids: diacylglycerol acyltransferase genes in peanut[J]. Journal of Peanut Science, 2018, 47(4): 33-40, 54. [19] Liu H C, Zhang J Q, Zhou J H, et al.Cloning of PsGRP gene from paeonia suffruticosa and waterlogging tolerance analysis of transgenic Arabidopsis[J]. Plant Physiology Journal, 2021, 57(2): 373-384. [20] Chi K W, Song Y, Li S L.Genome-wide identification and expressional analysis of the LIM gene family in Medicago truncatula[J]. Plant Physiology Journal, 2021, 57(5): 1074-1086. [21] Niazian M, Sadat-Noori S A, Tohidfar M, et al. Betaine aldehyde dehydrogenase (BADH) vs. Flavodoxin (Fld): two important genes for enhancing plants stress tolerance and productivity[J]. Frontiers in Plant Science, 2021, 12: 650215. doi: 10.3389/fpls.2021.650215. [22] Fan J, Yan C, Roston R, et al.Arabidopsis lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward β-oxidation, thereby maintaining membrane lipid homeostasis[J]. Plant Cell, 2014, 26(10): 4119-4134. [23] Demidchik V, Straltsova D, Medvedev S S, et al.Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment[J]. Journal of Experimental Botany, 2014, 65(5): 1259-1270. [24] Weber H, Chételat A, Reymond P, et al.Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde[J]. Plant Journal, 2004, 37(6): 877-888. [25] Gill S S, Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology Biochemistry, 2010, 48(12): 909-930. [26] Mittler R.Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. |