[1] 杜茜雅, 刘馨秋, 卢勇. 长江流域茶叶产地历史变迁及其影响因素[J]. 茶叶科学, 2024, 44(4): 694-706.
Du X Y, Liu X Q, Lu Y.Historical changes and influencing factors of tea producing areas in Yangtze River Basin[J]. Journal of Tea Science, 2024, 44(4): 694-706.
[2] 涂良剑, 林用松, 黄学敏, 等. 高EGCG茶树品系杂交技术研究[J]. 茶叶科学, 2012, 32(5): 426-431.
Tu L J, Lin Y S, Huang X M, et al.Hybridization technique for tea plant lines with high EGCG content[J]. Journal of Tea Science, 2012, 32(5): 426-431.
[3] Burghardt L T, Young N D, Tiffin P.A guide to genome-wide association mapping in plants[J]. Current Protocols in Plant Biology, 2017, 2(1): 22-38.
[4] Li J W, Zhou P, Hu Z H, et al.CsPAT1, a GRAS transcription factor, promotes lignin accumulation by antagonistic interacting with CsWRKY13 in tea plants[J]. The Plant Journal, 2024, 118(5): 1312-1326.
[5] Wang W L, Wang Y X, Li H, et al.Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia Sinensis (L.) O. Kuntze][J]. BMC Plant Biology, 2018, 18(1): 288. doi: 10.1186/s12870-018-1502-3.
[6] Li H, Teng R M, Liu J X, et al.Identification and analysis of genes involved in auxin, abscisic acid, gibberellin, and brassinosteroid metabolisms under drought stress in tender shoots of tea plants[J]. DNA and Cell Biology, 2019, 38(11): 1292-1302.
[7] Greener J G, Kandathil S M, Moffat L, et al.A guide to machine learning for biologists[J]. Nature Reviews Molecular Cell Biology, 2022, 23(1): 40-55.
[8] Montesinos-López O A, Montesinos-López A, Pérez-Rodríguez P, et al. A review of deep learning applications for genomic selection[J]. BMC Genomics, 2021, 22(1): 19. doi: 10.1186/s12864-020-07319-x.
[9] Yoosefzadeh-Najafabadi M, Rajcan I, Eskandari M.Optimizing genomic selection in soybean: an important improvement in agricultural genomics[J]. Heliyon, 2022, 8(11): e11873. doi: 10.1016/j.heliyon.2022.e11873.
[10] Sandhu K S, Lozada D N, Zhang Z W, et al.Deep learning for predicting complex traits in spring wheat breeding program[J]. Frontiers in Plant Science, 2021, 11: 613325. doi: 10.3389/fpls.2020.613325.
[11] Ornella L, Gonzalez-Camacho J M, Dreisigacker S, et al. Methods in molecular biology[M]. New York: Springer, 2017: 173-182.
[12] Liu Q, Zuo S M, Peng S S, et al.Development of machine learning methods for accurate prediction of plant disease resistance[J]. Engineering, 2024, 40: 100-110.
[13] Zhou M M, Kimbeng C A, Tew T L, et al.Logistic regression models to aid selection in early stages of sugarcane breeding[J]. Sugar Tech, 2014, 16(2): 150-156.
[14] Awad M, Khanna R.Efficient learning machines[M]. Berkeley: Apress, 2015: 39-66.
[15] Xiong Z, Cui Y X, Liu Z H, et al.Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation[J]. Computational Materials Science, 2020, 171: 109203. doi: 10.1016/j.commatsci.2019.109203.
[16] Qi Y F, Wang X M, Lei P, et al.The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis[J]. Plant Biology, 2020, 295(4): 1036-1046.
[17] Noam S, Tamar E, Rosalind W, et al.Use of plant chloroplast RNA-binding proteins as orthogonal activators of chloroplast transgenes in the green alga Chlamydomonas reinhardtii[J]. Algal Research, 2021, 60: 102535. doi: 10.1016/j.algal.2021.102535. |