[1] Zhang B, Horvath S.A general framework for weighted gene-co-expression network analysis[J]. Statistical Applications in Genetics and Molecular Biology, 2005, 4(1): 1-37. [2] 王涛, 王艺清, 周喆, 等. 白鸡冠茶树品种叶色白化相关共表达网络构建及潜在核心基因发掘[J]. 应用与环境生物学报, 2023, 29(2): 377-385. Wang T, Wang Y Q, Zhou Z, et al.Mining genes related to leaf color change of tea plant (Camellia sinensis cv. Baijiguan) based on WGCNA[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(2): 377-385. [3] Wang X P, Liu H L, Zhang D, et al.Photosynthetic carbon fixation and sucrose metabolism supplemented by weighted gene co-expression network analysis in response to water stress in rice with overlapping growth stage[J]. Frontiers in Plant Science, 2022, 13: 864605. doi: 10.3389/fpls.2022.864605. eCollection 2022. [4] Tian Z, He W, Tang J, et al.Identification of important modules and biomarkers in breast cancer based on WGCNA[J]. Oncotargets and Therapy, 2020, 13: 6805-6817. [5] 王泽涵, 于文涛, 王鹏杰, 等. 茶树秃房与茸房种质花器官差异表达基因的WGCNA分析[J]. 园艺学报, 2023, 50(3): 620-634. Wang Z H, Yu W T, Wang P J, et al.WGCNA analysis of differentially expressed genes in floral organs of tea germplasms with ovary-glabrous and ovary-trichome[J]. Acta Horticulturae Sinica, 2023, 50(3): 620-634. [6] 陈敏氡, 王彬, 刘建汀, 等. 基于转录组和WGCNA筛选丝瓜果长和果径发育调控相关基因[J]. 中国农业科学, 2023, 56(22): 4506-4522. Chen M D, Wang B, Liu J T, et al.Screening regulatory genes related to luffa fruit length and diameter development based on transcriptome and WGCNA[J]. Scientia Agricultura Sinica, 2023, 56(22): 4506-4522. [7] 唐桃霞, 孔维萍, 任凯丽, 等. 植物ABC转运蛋白功能研究进展[J]. 西北农业学报, 2023, 32(1): 1-10. Tang T X, Kong W P, Ren K L, et al.Advance of research in function of plant ABC transporters[J]. Acta Agric Borealioccident Sin, 2023, 32(1): 1-10. [8] Hwang J U, Song W Y, Hong D, et al.Plant ABC transporter enable many unique aspects of a terrestrial plant’s lifestyles[J]. Molecular Plant, 2016, 9(3): 338-355. [9] Kaneda M, Schuetc M, Lin B S, et al.ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport[J]. Journal of Experimental Botany, 2011, 62(6): 2063-2077. [10] 项上, 陈玉, 郑炳松, 等. 植物叶片形态特征与功能性状对环境适应性及其相互作用研究进展[J]. 安徽林业科技, 2024, 50(5): 11-18. Xiang S, Chen Y, Zheng B S, et al.Research progress in the environmental adaptability and interaction of plant leaf morphological characteristics and functional traits[J]. Anhui Forestry Science and Technology, 2024, 50(5): 11-18. [11] Kawai K, O Kada N. How are leaf mechanical properties and water-use traits coordinated by veintraits? A case study in Fagaceae[J]. Functional Ecology, 2016, 30(4): 527-536. [12] Scoffoni C, Albuquerque C, Brodersen C R, et al.Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline[J]. New Phytologist, 2017, 213(3): 1076-1092. [13] Gyeong M Y, Peter E D,Simon G, et al.Calcium-dependent protein kinaseisoforms in petunia have distinct functions in pol-len tube growth, including regulating polarity[J]. Plant Cell, 2006, 18: 867-878. [14] Frattini M, Morello L, Breviario D.Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development[J]. Plant Molecular Biology, 1999, 41: 753-764. [15] Valmonte G R, Arthur K, Higgins C M, et al.Calcium-dependent protein kinases in plants: evolution, expression and function[J]. Plant and Cell Physiology, 2014, 55(3): 551-569. [16] Yan M Y, Shu R J, Yi X, et al.Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus[J]. The Crop Journal, 2020, 8(1): 26-37. [17] 张裕. 模拟干旱胁迫对甘蔗蜡质影响及蜡质合成相关基因SsKCS6和SsCER10研究[D]. 南宁: 广西大学, 2024. Zhang Y.Effects of simulated drought stress treatment on sugarcane wax and wax synthesis related genes SsKCS6 and SsCER10 [D]. Nanning: Guangxi University, 2024. [18] 杨建坤. 木质素与茶树新梢嫩度关系的研究[D]. 杨凌: 西北农林科技大学, 2019. Yang J K.Study on relation between lignin and shoot tendness of Camellia sinensis [D]. Yangling: Northwest Agricultural and Forestry University, 2019. [19] 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. Wang M T, Liu J W, Zhao C Z.Molecular mechanisms of cell wall integrity in plants under salt stress[J]. Biotechnology Bulletin, 2023, 39(11): 18-27. [20] 赵会娟. OsRAC3在水稻中的生物学功能研究[D]. 广州: 华南农业大学, 2020. Zhao H J.Biological role of OsRAC3 in rice [D]. Guangzhou: South China Agricultural University, 2020. [21] 李丹, 赵存鹏, 赵丽英, 等. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. Li D, Zhao C P, Zhao L Y, et al.Cloning and functional analysis of epidermis-specific secreted glycoprotein EP1-like gene GhA01EP1 in cotton[J]. Cotton Science, 2021, 33(6): 448-458. [22] Hairat S, Baranwal V K, Khurana P.Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles[J]. Plant Physiology and Biochemistry, 2018, 130: 418-430. [23] Nieuwland J, Feron R, Huisman B A H, et al. Lipid transfer proteins enhance cell wall extension in tobacco[J]. The Plant Cell, 2005, 17(7): 2009-2019. [24] 李玉峰, 黄训文, 卢凤梅, 等. 尼瓦拉野生稻FKBP基因家族的鉴定及功能分析[J]. 现代化农业, 2021(10): 29-33. Li Y F, Huang X W, Lu F M, et al.Identification and functional analysis of the FKBP gene family in Oryza nivara[J]. Modernizing Agriculture, 2021(10): 29-33. |