Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (5): 779-792.doi: 10.13305/j.cnki.jts.20240918.001
• Research Paper • Previous Articles Next Articles
DING Shuqia1,3, XIE Xinya1,3, LIU Zhusheng2,*, LIAO Xianjun2, LIU Zhonghua1,3, CAI Shuxian1,3,*
Received:
2024-01-26
Revised:
2024-03-25
Online:
2024-10-15
Published:
2024-11-08
CLC Number:
DING Shuqia, XIE Xinya, LIU Zhusheng, LIAO Xianjun, LIU Zhonghua, CAI Shuxian. A Study on the Neuroprotective Effects of Combined EGCG and L-Theanine from Tea Leaves[J]. Journal of Tea Science, 2024, 44(5): 779-792.
[1] Powers E T, Morimoto R I, Dillin A, et al.Biological and chemical approaches to diseases of proteostasis deficiency[J]. Annual Review of Biochemistry, 2009, 78(1): 959-991. [2] Taylor R C, Dillin A.Aging as an event of proteostasis collapse[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(5): 328-342. doi: 10.1101/cshperspect.a004440. [3] Mok K H, Pettersson J, Orrenius S, et al.HAMLET, protein folding, and tumor cell death[J]. Biochemical & Biophysical Research Communications, 2007, 354(1): 1-7. [4] Chiti F, Dobson C M.Protein misfolding, functional amyloid, and human disease[J]. Annual Review of Biochemistry, 2006, 75(1): 333-366. [5] Soto C.Alzheimer's and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches[J]. Journal of Molecular Medicine, 1999, 77(5): 412-418. [6] Wallace R A, Dalton A J.What can we learn from study of Alzheimer's disease in patients with down syndrome for early-onset Alzheimer's disease in the general population?[J]. Alzheimer's Reseach &Therapy, 2011, 3(2): 13. doi: 10.1186/alzrt72. [7] Asaad M, Lee J H. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models [J]. Disease Models and Mechanisms, 2018, 11(5): dmm031724. doi: 10.1242/dmm.031724. [8] Sheng J G, Zhou X Q, Mrak R E, et al.Progressive neuronal injury associated with amyloid plaque formation in Alzheimer disease[J]. Journal of Neuropathology and Experimental Neurology, 1998(7): 714-717. [9] Inglis F.The tolerability and safety of cholinesterase inhibitors in the treatment of dementia[J]. International Journal of Clinical Practice Supplement, 2002, 127(127): 45.doi: .1016/S0924-8579(02)00114-0. [10] Pervin M, Unno K, Takagaki A, et al.Function of green tea catechins in the brain: epigallocatechin gallate and its metabolites[J]. International Journal of Molecular Sciences, 2019, 20(15): 3630. doi: 10.3390/ijms20153630. [11] Afzal O, Dalhat M H, Altamimi A S A, et al. Green tea catechins attenuate neurodegenerative diseases and cognitive deficits[J]. Molecules, 2022, 27(21): 7604. doi: 10.3390/molecules27217604. [12] Youn K, Ho C T, Jun M.Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer's disease: an overview of pre-clinical studies focused onβ-amyloid peptide[J]. Food Science and Human Wellness, 2022, 11(3): 11. doi:10.1016/j.fshw.2021.12.006. [13] Miren E, Amanda C, Patricia R M, et al.Epigallocatechin-3-gallate (EGCG) improves cognitive deficits aggravated by an obesogenic diet through modulation of unfolded protein response in APPswe/PS1dE9 mice[J]. Molecular Neurobiology, 2020, 57(4): 1814-1827. [14] Walker J M, Klakotskaia D, Ajit D, et al.Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer's disease mouse model[J]. Journal of Alzheimers Disease, 2015, 44(2): 561-572. [15] Unno K, Pervin M, Nakagawa A, et al.Blood-brain barrier permeability of green tea catechin metabolites and their neuritogenic activity in human neuroblastoma SH-SY5Y cells[J]. Molecular Nutrition & Food Research, 2017, 61(12): 1700294. doi:10.1002/mnfr.201700294. [16] Pervin M, Unno K, Nakagawa A, et al.Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice[J]. Biochemistry and Biophysics Reports, 2017, 9: 180-186. [17] Du A Z, Rong D, Cyrollah L, et al.Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines, inhibits the 3CLpro activity of SARS-CoV-2[J]. International Journal of Biological Macromolecules, 2021, 176(1): 1-12. [18] Wu Z, Yu W, Ni W, et al.Improvement of obesity by Liupao tea is through the IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network pharmacology and experimental verification[J]. Phytomedicine, 2023, 110: 154633. doi:10.1016/j.phymed.2022.154633 [19] Gong Z, Liu Q, Lin L, et al. [20] Tsai, Wen H, Chung H, et al. [21] Unno T, Suzuki Y, Kakuda T, et al.Metabolism of theanine, gamma-glutamylethylamide, in rats[J]. Journal of Agricultural and Food Chemistry, 1999, 47(4): 1593-1596. [22] Nedergaard M, Takano T, Hansen A J.Beyond the role of glutamate as a neurotransmitter[J]. Nature Reviews Neuroscience, 2002, 3(9): 748-755. [23] Ben P, Zhang Z, Zhu Y, et al. [24] Lipinski C A, Lombardo F, Dominy B W, et al.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Advanced Drug Delivery Reviews, 2001, 46(1/2/3): 3-26. [25] Daina A, Michielin O, Zoete V.SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Scientific Reports. 2017, 7: 42717. doi: 10.1038/srep42717. [26] Wang Y X, Zhang S, Li F C, et al.Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics[J]. Nucleic Acids Research, 2020, 48(D1): 1031-1041. [27] Bader G D, Hogue C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4: 2. doi: 10.1186/1471-2105-4-2. [28] Zhou Y, Zhou B, Pache L, et al.Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nature Communications, 2019, 10(1): 1523. doi: 10.1038/s41467-019-09234-6. [29] Papassotiropoulos A, Gerhards C, Heck A, et al.Human genome-guided identification of memory-modulating drugs[J]. Proceedings of the National Academy of Sciences, 2013, 110(46): 4369-4374. [30] Gonçalves P B, Sodero A C R, Cordeiro Y. Green tea epigallocatechin-3-gallate (EGCG) targeting protein misfolding in drug discovery for neurodegenerative diseases[J]. Biomolecules, 2021, 11(5): 767. doi: 10.3390/biom11050767. [31] 刘宝贵, 陈致印, 张杨玲, 等. Liu B G, Chen Z Y, Zhang Y L,et al.Synergistic moderating effects of [32] 彭影琦, 袁冬寅, 林玲, 等. 表没食子儿茶素没食子酸酯对 Peng Y Q, Yuan D Y, Lin L, et al.Influence of epigallocatechin gallate on the regulation effect of [33] Bianchi V E, Herrera P F, Laura R.Effect of nutrition on neurodegenerative diseases. A systematic review[J]. Nutr Neurosci, 2021, 24(10): 810-834. [34] Zhang W, Bai Y, Wang Y, et al.Polypharmacology in drug discovery: a review from systems pharmacology perspective[J]. Current Pharmaceutical Design, 2016, 22(21): 3171-3181. [35] Xie X, Wan J, Zheng X, et al.Synergistic effects of epigallocatechin gallate and [36] Mandel S, Amit T, Reznichenko L, et al.Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders[J]. Molecular Nutrition & Food Research, 2006, 50(2): 229-234. [37] Unno K, Yamada H, Iguchi K, et al.Anti-stress effect of green tea with lowered caffeine on humans: a pilot study[J]. Biological & Pharmaceutical Bulletin, 2017, 40(6): 902. doi: 10.1248/bpb.b17-00141. [38] Kim T I, Lee Y K, Park S G, et al.L-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways[J]. Free Radical Biology and Medicine, 2009, 47(11): 1601-1610. [39] Morley J E, Armbrecht H J, Farr S A, et al.The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer's disease[J]. Biochim Biophys Acta, 2012, 1822(5): 650-656 |
[1] | HE Haotian, XIAO Juanjuan, TANG Yiyu, LUO Mi, LIU Zhonghua, YU Lijun. Prediction and Analysis of Active Components in Tea Stem Fermented Product Based on Network Pharmacology [J]. Journal of Tea Science, 2024, 44(4): 665-682. |
[2] | WANG Dongxue, MAN Jiaxu, WU Simin, ZHAO Xueting, ZHANG Dongying. Spatial Transcriptome Sequencing of Shilixiang in Yunnan Province [J]. Journal of Tea Science, 2024, 44(3): 399-410. |
[3] | WANG Yu'an, DU Wenkai, WAN Jinghong, XIE Dongchao, ZHANG Haihua, JIN Peng, DU Qizhen. Preparation of Torreya Seed Oil-EGCG Nanoemulsion and Its Effect on the Quality of Salad Dressing and Moon Cakes [J]. Journal of Tea Science, 2024, 44(2): 269-282. |
[4] | WAN Liwei, ZENG Hongzhe, PENG Liyuan, WEN Shuai, LIU Changwei, BAO Sudu, AN Qin, HUANG Jian'an, LIU Zhonghua. Inductive Effect and Mechanism of EGCG on Beiging of White Adipose Tissue in High-fat Diet-fed GK Rats [J]. Journal of Tea Science, 2024, 44(1): 119-132. |
[5] | PENG Liyuan, ZENG Hongzhe, WAN Liwei, WEN Shuai, LIU Changwei, AN Qin, BAO Sudu, HUANG Jian'an, LIU Zhonghua. The Investigation of the Ameliorate Effect and Mechanism of EGCG on Non-obese GK Rat with Diabetic Kidney Damage [J]. Journal of Tea Science, 2023, 43(6): 784-794. |
[6] | SHENG Zheng, DU Wenkai, WANG Chongchong, ZHANG Boan, ZHANG Haihua, DU Qizhen. Effect of Tea Polyphenols on the Determination of Reducing Sugar in Tea Food [J]. Journal of Tea Science, 2023, 43(4): 567-575. |
[7] | CHEN Ke, WANG Yuanzhu, YANG Xiaoying, ZHANG Dongying, ZHU Qiangqiang. Preparation of Nanoparticules with Chitosan Complexed β-lactoglobulin Loaded EGCG and their Effects on Blood Glucose in Diabetic Mice [J]. Journal of Tea Science, 2022, 42(5): 731-739. |
[8] | YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun. Recent Advances in Catechin Biomedical Nanomaterials [J]. Journal of Tea Science, 2022, 42(4): 447-462. |
[9] | ZHANG Yini, JI Zheng. Econometric Analyses of EGCG Research Literature [J]. Journal of Tea Science, 2022, 42(3): 423-434. |
[10] | HUANG Qiuping, XIE Chenyang, LI Xinyu, JIN Bin, ZENG Zhen, QIAN Bo, DAI Ling, SONG Jiale. L-Theanine Ameliorated Clinical Symptoms in Letrozole-Induced Polycystic Ovary Syndrome Rats [J]. Journal of Tea Science, 2021, 41(6): 831-842. |
[11] | CHEN Meiyan, LIU Fen, LIN Yong, ZUO Gaolong, ZUO Yingpeng, LIU Zhonghua. Intervention Effects of L-Theanine on the Damage of Hippocampus and Gut in CUMS Depressed Rats [J]. Journal of Tea Science, 2021, 41(4): 511-524. |
[12] | LONG Yaqin, LUO Ziwen, WANG Xuesong, LONG Lixue, YU Xiangshuai, LI Jinlong, QU Hao, WANG Yungang, CHEN Linbo. Analysis of the Antennal Transcriptome and Olfactory-related Genes in the Agriophara rhombata [J]. Journal of Tea Science, 2021, 41(4): 553-563. |
[13] | LIU Dingding, WANG Junya, TANG Rongjin, CHEN Liang, MA Chunlei. Genome-wide Identification of PPR Gene Family and Expression Analysis of Albino Related Genes in Tea Plants [J]. Journal of Tea Science, 2021, 41(2): 159-172. |
[14] | CHEN Chunxiao, LOU Wenyu, DING Zhenjian, LI Zhuoye, YANG Yuanyuan, JIN Peng, DU Qizhen. Vardenafil Improves the Proliferative Inhibition of EGCG-β-lactoglobulin Nanoparticles Against Liver Cancer Cells [J]. Journal of Tea Science, 2020, 40(4): 528-535. |
[15] | XU Yan, CAI Xiaqiang, XIE Qianjin, TAI Lingling, LIU Zenghui. The Intergative Effects of Epigallocatechin-3-gallate and Vitamin C on Serum Uric Acid Levels in Hyperuricemic Mice [J]. Journal of Tea Science, 2020, 40(3): 407-414. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|