






Journal of Tea Science ›› 2025, Vol. 45 ›› Issue (1): 15-28.doi: 10.13305/j.cnki.jts.2025.01.004
• Research Paper • Previous Articles Next Articles
DONG Yuan1, ZHANG Yongheng2, XIAO Yezi3, YU Youben3,*
Received:2024-11-19
Revised:2024-12-25
Online:2025-02-15
Published:2025-03-03
CLC Number:
DONG Yuan, ZHANG Yongheng, XIAO Yezi, YU Youben. Cloning of BZR1 Gene Family in Tea Plants and Molecular Mechanism Study of CsBZR1-5 Response to Drought Stress[J]. Journal of Tea Science, 2025, 45(1): 15-28.
| [1] Yin Y, Vafeados D, Tao Y, et al.A new class of transcription factors mediates brassinosteroid-regulated gene expression in [2] Ye H, Liu S, Tang B, et al.RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nature Communications, 2017, 8(1): 14573. doi: 10.1038/ncomms14573. [3] 郭新磊, 路普, 王园园, 等. 棉花BZR基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2017, 29(5): 415-427. Guo X L, Lu P, Wang Y Y, et al.Genome-wide identification and expression analysis of gene family encoding brassinazole resistant transcription factors in cotton[J]. Cotton Science, 2017, 29(5): 415-427. [4] Saha G, Park J I, Jung H J, et al.Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in [5] Yin Y L, Qin K Z, Song X W, et al.BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato[J]. Plant Cell Physiology, 2018, 59(11): 2239-2254. [6] Bai M Y, Zhang L Y, Gampala S S, et al.Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. PNAs, 2007, 104(34): 13839-13844. [7] Park C H, Kim T W, Son S H, et al.Brassinosteroids control [8] Lachowiec J, Mason G A, Schultz K, et al.Redundancy, feedback, and robustness in the [9] 刘天宇. 油菜素甾醇对番茄保卫细胞运动的影响及其调控机制[D]. 杭州: 浙江大学, 2016. Liu T Y.Effect and regulatory mechanism of brassinosteroid on stomatal movement in tomato [D]. Hangzhou: Zhejiang University, 2016. [10] Domagalska M A, Schomburg F M, Amasino R M, et al.Attenuation of brassinosteroid signaling enhances [11] Jiang W B, Huang H Y, Hu Y W, et al.Brassinosteroid regulates seed size and shape in Arabidopsis[J]. Plant Physiology, 2013, 162(4): 1965-1977. [12] Jiang J, Zhang C, Wang X.A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in [13] 陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11): 9-17. Chen X, Shen C Y, Mo F L, et al.Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. Journal of Northeast Agricultural University, 2021, 52(11): 9-17. [14] Yu H Q, Feng W Q, Sun F A, et al.Cloning and characterization of BES1/BZR1 transcription factor genes in maize[J]. Journal of Plant Growth Regulation, 2018, 86: 235-249. [15] Luo S L, Zhang G B, Zhang Z Y, et al.Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber ( [16] 李春, 刘小俊, 蔡鹏, 等. 中国南瓜BZR基因家族的全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2022, 20(19): 6324-6330. Li C, Liu X J, Cai P, et al.Genome-wide identification and bioinformatics analysis of BZR gene family in pumpkin ( [17] Li S, Yan J, Chen L G, et al.Brassinosteroid regulates stomatal development in etiolated Arabidopsis cotyledons via transcription factors BZR1 and BES1[J]. Plant Physiology, 2024, 195(2): 1382-1400. [18] Diao R, Zhao M, Liu Y, et al.The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module[J]. Journal of Integrative Plant Biology, 2023, 65(12): 2631-2644. [19] He Y, Zhao Y, Hu J, et al.The OsBZR1-OsSPX1/2 module fine-tunes the growth-immunity trade-off in adaptation to phosphate availability in rice[J]. Molecular Plant, 2024, 17(2): 258-276. [20] Wang Y, Cao J, Wang K, et al.BZR1 Mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato[J]. Plant Physiology, 2018, 179: 671-685. [21] 江倩倩, 王雨婷, 惠竹梅. 葡萄BZR基因家族的鉴定及表达分析[J]. 植物生理学报, 2021, 57(6): 1218-1228. Jiang Q Q, Wang Y T, Xi Z M.Identification and expression analysis of BZR gene family in grapevine[J]. Plant Physiology Journal, 2021, 57(6): 1218-1228. [22] 黎泽斌, 邱永争, 刘延杰, 等. 紫花苜蓿BZR基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2024, 33(11): 106-122. Li Z B, Qiu Y Z, Liu Y J, et al.Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress[J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. [23] Sun F, Yu H, Qu J, et al.Maize ZmBES1/BZR1-5 decreases ABA sensitivity and confers tolerance to osmotic stress in transgenic [24] Hwang S G, Lee C Y, Tseng C S.Heterologous expression of rice 9- [25] 刘建汀, 叶新如, 张前荣, 等. 西葫芦NCED基因家族鉴定及其响应干旱胁迫分析[J]. 西北植物学报, 2023, 43(4): 569-581. Liu J T, Ye X R, Zhang Q R, et al.Genome-wide identification and response to drought stress of [26] Li J W, Zhou P, Yang N, et al.CsBZR1 family transcription factors in wild and cultural tea plants and their response to hormone and abiotic stress[J]. Journal of Plant Growth Regulation, 2024, 43: 840-853. [27] Zhang Q J, Li W, Li K, et al.The Chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution[J]. Molecular Plant, 2024, 13(7): 935-938. [28] Yu X, Li L, Zola J, et al.A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in [29] He J X, Gendron J M, Sun Y, et al.BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses[J]. Science, 2005, 307(5715): 1634-1638. [30] Zhang Y H, Xiao Y Z, Zhang Y A, et al.Accumulation of Galactinol and ABA is involved in exogenous EBR-induced drough tolerance in tea plants[J]. Journal of Agricultural and Food Chemistry, 2022, 70(41): 13391-13403. [31] 臧文蕊, 马明, 砗根, 等. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. Zang W R, Ma M, Chen G, et al.Genome-wide identification and expression pattern analysis of BZR transcription factor gene family of melon[J]. Biotechnology Bulletin, 2024, 40(7): 163-171. [32] Luo S, Zhang G, Zhang Z, et al.Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber ( [33] 张晴, 严新悦, 左春柳, 等. 大豆 Zhang Q, Yan X Y, Zuo C L, et al.Evolution and brassinosteroid response analysis of [34] Kuijt S J H, Lamers G E M, Rueb S, et al. Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice[J]. Plant Molecular Biology, 2004, 55: 781-796. [35] Otani Y, Tomonaga Y, Tokushige K, et al.Expression profiles of four BES1/BZR1 homologous genes encoding bHLH transcription factors in [36] 左春柳. 芹菜 Zuo C L.Identification and function analysis of [37] 冯文奇, 孙福艾, 丁磊, 等. 玉米转录因子 Feng W Q, Sun F A, Ding L, et al.Cloning and functional analysis of maize transcription factor [38] Li R, Zhang B, Li T, et al.Identification and characterization of the BZR transcriptionfactor genes family in potato ( [39] Chen J, Nolan T M, Ye H, et al.Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. Plant Cell, 2017, 29(6): 1425-1439. [40] Cui X Y, Gao Y, Guo J, et al.BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of [41] Sahni S, Prasad B, Liu Q, et al.Overexpression of the brassinosteroid biosynthetic gene [42] 魏鑫, 倪虹, 张会慧, 等. 外源脱落酸和油菜素内酯对干旱胁迫下大豆幼苗抗旱性的影响[J]. 中国油料作物学报, 2016, 38(5): 605-610. Wei X, Ni H, Zhang H H, et al.Effects of exogenous abscisic acid and brassinolide on drought resistance of soybean seedlings[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(5): 605-610. [43] 程鸿燕, 郭昱, 马芳芳, 等. 谷子 Cheng H Y, Guo Y, Ma F F, et al.Identification of |
| [1] | JIANG Li, LI Duojiao, HU Xinrong, SHEN Yingzi, ZHENG Zhaisheng, WENG Xiaoxing, LIU Shujing, BIAN Xiaodong, YUAN Ming'an, CHEN Xuan. Effects of Different Cultivation Patterns on Physiological and Biochemcial Characteristics of New Shoots in Seed-Leaf Dual-Purpose Tea Plants [J]. Journal of Tea Science, 2025, 45(5): 783-794. |
| [2] | WANG Kairong, ZHANG Longjie, LIANG Yuerong, LI Xiaoxiang, ZHENG Xinqiang. Identification and Classification of Tea Leaf Color and Establishment of A Tea Leaf Color System [J]. Journal of Tea Science, 2025, 45(5): 795-807. |
| [3] | ZHOU Yide, CHEN Jialin, WU Junmei, ZHAO Hongbo, SUN Binmei, LIU Shaoqun, ZHENG Peng. Nitrogen Metabolism Genes in Tea Plant: Research Progress on the Environmental Stress Adaptation Mechanism and Breeding Application [J]. Journal of Tea Science, 2025, 45(4): 545-558. |
| [4] | SUN Mengzhen, HU Zhihang, YANG Kaixin, ZHANG Jiaqi, ZHANG Nan, XIONG Aisheng, LIU Hui, ZHUANG Jing. Identification of Circadian Clock CsLUX Gene and Its Effects on Photosynthetic Characteristics in Tea Plants [J]. Journal of Tea Science, 2025, 45(4): 559-570. |
| [5] | ZHAI Xiuming, LI Jie, XIAO Fuliang, TANG Min, ZENG Lewu, HOU Yujia, TANG Yi. WGCNA Analysis of Differentially Expressed Genes between Parallel Variation and Normal Tea Stems and Leaves [J]. Journal of Tea Science, 2025, 45(3): 402-414. |
| [6] | ZHANG Hui, LIU Fengjing, LI Huiling, LI Liangde, WANG Qingsen, WANG Dingfeng. Metabolomics Analysis of Different Resistant Tea Cultivars Infected by Acaphylla theae in The Early Stage [J]. Journal of Tea Science, 2025, 45(3): 415-426. |
| [7] | GUO Jialu, QU Furong, CAI Tianchen, ZHAO Yang, YANG Peidi, LIU Yong, ZHOU Yuebin, LIU Zhen. Study on the Genetic Diversity of 78 Tea Germplasm Resources in Hunan Based on Agronomic Traits and SNP Molecular Markers [J]. Journal of Tea Science, 2025, 45(2): 219-233. |
| [8] | HUANG Fuyin, ZHANG Shaobo, HU Qiang, LUO Ying, DONG Yajie, ZHANG Jie, LI Xin, FU Jianyu, WANG Huasen, YAN Peng. The Impacts and Regulatory Mechanisms of Forest Conversion to Tea Plantations and Their Management on Soil Carbon and Nitrogen Pools [J]. Journal of Tea Science, 2025, 45(2): 234-252. |
| [9] | LI Yuexin, YAN Donghai, ZHANG Jinfeng, PU Yundan, LI Shuai, MENG Zehong. Identification of the L-type Lectin Receptor Kinase Gene Family in Camellia sinensis and Its Response to Tea Brown Blight and Tea Anthracnose [J]. Journal of Tea Science, 2025, 45(2): 253-265. |
| [10] | YANG Nan, LI Zhuan, LIU Meichen, MA Junjie, SHI Yuntao, WEI Xiangning, LIN Yangshun, MAO Yuyuan, GAO Shuilian. Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition [J]. Journal of Tea Science, 2024, 44(6): 887-900. |
| [11] | ZHAO Qian, LIU Qian, CAI-HE Jiayi, HE Jieqi, FANG Yunya, LIU Yuxin, CHEN Chao, ZHENG Yaodong, ZHANG Tianjing, YU Wenjuan, YANG Guang. Effects of Combined Drought and Low-temperature Stress on Photosynthetic Physiological Characteristics of Tea Plants and Simulation Prediction [J]. Journal of Tea Science, 2024, 44(6): 901-916. |
| [12] | LIU Xiaolu, ZHU Yalan, YU Min, GAI Xinyue, FAN Yangen, SUN Ping, HUANG Xiaoqin. Changes in Cell Wall Structure and Photosynthetic Characteristics of Tea Leaves under Low Temperature Stress [J]. Journal of Tea Science, 2024, 44(6): 917-927. |
| [13] | ZHAO Jiancheng, NI Huijing, WANG Bo, CAI Chunju, YANG Zhenya. Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest [J]. Journal of Tea Science, 2024, 44(6): 928-940. |
| [14] | LU Wei, WU Xiaolong, HU Xianchun, HAO Yong, LIU Chunyan. Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress [J]. Journal of Tea Science, 2024, 44(5): 718-734. |
| [15] | CHEN Shichun, JIANG Hongyan, LIAO Shuran, CHEN Tingxu, NIU Jinzhi, WANG Xiaoqing. Genetic Diversity Analysis of Euproctis pseudoconspersa and Its Bunyavirus (EpBYV) in China [J]. Journal of Tea Science, 2024, 44(5): 793-806. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||