[1] Six J, Frey S D, Thiet R K, et al.Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2): 555-569. [2] Liu Y L, Zhang M, Xiong H, et al.Influence of long-term fertilization on soil aggregates stability and organic carbon occurrence characteristics in karst yellow soil of Southwest China[J]. Frontiers in Plant Science, 2023, 14: 1126150. doi: 10.3389/fpls.2023.1126150. [3] 王义祥, 黄家庆, 叶菁, 等. 生物炭对酸化茶园土壤性状和真菌群落结构的影响[J]. 茶叶科学, 2021, 41(3): 419-429. Wang Y X, Huang J Q, Ye J, et al.Effects of biochar application on soil properties and fungi community structure in acidified tea gardens[J]. Journal of Tea Science, 2021, 41(3): 419-429. [4] 李昌娟, 杨文浩, 周碧青, 等. 生物炭基肥对酸化茶园土壤养分及茶叶产质量的影响[J]. 土壤通报, 2021, 52(2): 387-397. Li C J, Yang W H, Zhou B Q, et al.Effects of biochar based fertilizer on soil nutrients, tea output and quality in an acidified tea field[J]. Chinese Journal of Soil Science, 2021, 52(2): 387-397 [5] Yang X D, Ni K, Shi Y Z, et al.Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J]. Agriculture Ecosystems & Environment, 2018, 252: 74-82. doi.10.1016/j.agee.2017.10.004. [6] 麻万诸, 朱康莹, 卓志清. 酸化对茶园土壤矿物转变及供钾能力的影响[J]. 茶叶科学, 2023, 43(1): 17-26. Ma W Z, Zhu K Y, Zhuo Z Q.Effects of acidification on mineral transformation and potassium supply capacity of tea garden soils[J]. Journal of Tea Science, 2023, 43(1): 17-26. [7] 潘根兴, 周萍, 李恋卿, 等. 固碳土壤学的核心科学问题与研究进展[J]. 土壤学报, 2007(2): 327-337. Pan G X, Zhou P, Li L Q, et al.Core issues and research progresses of soil science of C sequestration[J]. Acta Pedologica Sinica, 2007(2): 327-337. [8] Chaplot V, Cooper M. Soil aggregate stability to predict organic carbon outputs from soils [J]. Geoderma, 2015, 243/244: 205-213. doi: 10.1016/j.geoderma.2014.12.013. [9] Bimüller C, Kreyling O, Kölbl A, et al.Carbon and nitrogen mineralization in hierarchically structured aggregates of different size[J]. Soil & Tillage Research, 2016, 160: 23-33. doi: 10.1016/j.still.2015.12.011. [10] 李露露, 李婷, 郎山鑫, 等. 植茶年限降低土壤团聚体稳定性并促进大团聚体中钾素释放[J]. 植物营养与肥料学报, 2020, 26(7): 1188-1197. Li L L, Li T, Lang S X, et al.Tea plantation ages decrease the stability of soil aggregates and increase the release of potassium from large aggregates[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1188-1197. [11] 朱仁欢, 郑子成, 李廷轩, 等. 植茶年限对土壤水稳性团聚体腐殖质组分特征的影响[J]. 环境科学研究, 2018, 31(6): 1096-1104. Zhu R H, Zheng Z C, Li T X, et al.Effect of tea plantation age on humus fractions in soil water-stable aggregates[J]. Research of Environmental Sciences, 2018, 31(6): 1096-1104. [12] 钦洁, 翟瑞宁, 李宇翔, 等. 广西茶产业转型路径探讨与融合发展[J]. 湖北农业科学, 2022, 61(13): 113-119. Qin J, Zhai R N, Li Y X, et al.Discussion on transformation path and integrated development of tea industry in Guangxi[J]. Hubei Agricultural Sciences, 2022, 61(13): 113-119. [13] Mao L, Ye S M, Wang S Q.Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China[J]. Soil, 2022, 8(2): 487-505. [14] Wang C Q, Luo D, Zhang X, et al.Biochar-based slow-release of fertilizers for sustainable agriculture: a mini review[J]. Environmental Science and Ecotechnology, 2022, 10: 100167. doi: 10.1016/j.ese.2022.100167. [15] 索广利. 茶园炭基肥应用及前景分析研究[D]. 南宁: 广西大学, 2023. Suo G L.Application and prospect analysis of charcoal-based fertilizer in tea garden [D]. Nanning: Guangxi University, 2023. [16] Six J, Elliott E T, Paustian K, et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. [17] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 25-38. Bao S D.Agrochemical analysis of soil [M]. Beijing: China Agriculture Press, 2000: 25-38. [18] Wang J, Xie H, Zhu P, et al.Cannotation and modern analysis method for active soil organic matter (carbon)[J]. Chinese Journal of Ecology, 2003, 22(6): 109-112. [19] 徐国鑫, 王子芳, 高明, 等. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响[J]. 环境科学, 2018, 39(1): 355-362. Xu G X, Wang Z F, Gao M, et al.Effects of straw and biochar return in soil on soil aggregate and carbon sequestration[J]. Environmental Science, 2018, 39(1): 355-362. [20] 李辉信, 袁颖红, 黄欠如, 等. 长期施肥对红壤性水稻土团聚体活性有机碳的影响[J]. 土壤学报, 2008(2): 259-266. Li H X, Yuan Y H, Huang Q R, et al.Effects of long-term fertilization on labile organic carbon in soil aggregates in red paddy soil[J]. Acta Pedologica Sinica, 2008(2): 259-266. [21] 张琦, 王淑兰, 王浩, 等. 深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响[J]. 中国农业科学, 2020, 53(14): 2840-2851. Zhang Q, Wang S L, Wang H, et al.Effects of subsoiling and no-tillage frequencies on soil aggregates and carbon pools in the loess plateau[J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851. [22] Zhao Y K, Wang H, Chen X W, et al.Effect of rainfall on soil aggregate breakdown and transportation on cultivated land in the black soil region of northeast China[J]. Sustainability, 2022, 14(17): 11028. doi: 10.3390/su141711028. [23] Zhang Y, Li P, Liu X J, et al.Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China[J]. Geoderma, 2019, 351: 188-196. doi: 10.1016/j.geoderma.2019.05.037. [24] 袁可能. 土壤有机矿质复合体研究Ⅰ. 土壤有机矿质复合体中腐殖质氧化稳定性的初步研究[J]. 土壤学报, 1963(3): 286-293. Yuan K N.Studies on the organo-mineral complex in soil Ⅰ. The oxidation stability of humus from different organo-mineral complexes in soil[J]. Acta Pedologica Sinica, 1963(3): 286-293. [25] 陈玉真, 王峰, 吴志丹, 等. 化肥减施对乌龙茶产量、品质和肥料利用率及经济效益的影响[J]. 茶叶科学, 2020, 40(6): 758-770. Chen Y Z, Wang F, Wu Z D, et al.Effects of chemical fertilizer reduction on yield, quality, fertilizer utilization efficiency and economic benefit of Oolong tea[J]. Journal of Tea Science, 2020, 40(6): 758-770. [26] 钱莲文, 余甜甜, 梁旭军, 等. 茶园土壤酸化改良中生物炭应用5a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. Qian L W, Yu T T, Liang X J, et al.Stability of biochar after application for 5 years in the amendment of acidified tea garden soil[J]. Ecology and Environmental Sciences, 2022, 31(7): 1442-1447. [27] 胡天睿, 蔡泽江, 王伯仁, 等. 有机肥替代化学氮肥提升红壤抗酸化能力[J]. 植物营养与肥料学报, 2022, 28(11): 2052-2059. Hu T R, Cai Z J, Wang B R, et al.Swine manure as part of the total N source improves red soil resistance to acidification[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 2052-2059. [28] 颜鹏, 韩文炎, 李鑫, 等. 中国茶园土壤酸化现状与分析[J]. 中国农业科学, 2020, 53(4): 795-813. Yan P, Han W Y, Li X, et al.Present situation and analysis of soil acidification in Chinese tea garden[J]. Scientia Agricultura Sinica, 2020, 53(4): 795-813. [29] Wang S Q, Li T X, Zheng Z C.Distribution of microbial biomass and activity within soil aggregates as affected by tea plantation age[J]. Catena, 2017, 153: 1-8. doi: 10.1016/j.catena.2017.01.029. [30] Li G F, Li H, Yi X Y, et al.Effects of fertilization regimes on soil organic carbon fractions and its mineralization in tea gardens[J]. Agronomy, 2022, 12(10): 2522. doi: 10.3390/agronomy12102522. [31] Keith A, Singh B, Singh B P.Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J]. Environmental Science & Technology, 2011, 45(22): 9611-9618. [32] Zong Y T, Lu S G.Does long-term inorganic and organic fertilization affect soil structural and mechanical physical quality of paddy soil?[J]. Archives of Agronomy and Soil Science, 2020, 66(5): 625-637. [33] 葛茂泉, 王纯, 许宏达, 等. 福鼎茶园土壤团聚体有机碳分布与分子结构特征[J]. 水土保持学报, 2023, 37(6): 201-208. Ge M Q, Wang C, Xu H D, et al.Organic carbon distribution and molecular structure characteristics of soil aggregates in fuding tea garden[J]. Journal of Soil and Water Conservation, 2023, 37(6): 201-208. [34] 郑子成, 刘敏英, 李廷轩. 不同植茶年限土壤团聚体有机碳的分布特征[J]. 中国农业科学, 2013, 46(9): 1827-1836. Zheng Z C, Liu M Y, Li T X.Distribution characteristics of organic carbon fractions in soil aggregates under tea plantation of different ages[J]. Scientia Agricultura Sinica, 2013, 46(9): 1827-1836. [35] 李玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326-6336. Li W, Zheng Z C, Li T X, et al.Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326-6336. [36] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643. Liu Y L, Wang P, Wang J K.Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3): 627-643. [37] 李越, 徐曼, 谢永红, 等. 不同改良剂对酸性紫色土团聚体和有机碳的影响[J]. 环境科学, 2024, 45(2): 974-982. Li Y, Xu M, Xie Y H, et al.Effects of different modifiers on aggregates and organic carbon in acidic purple soil[J]. Environmental Science, 2024, 45(2): 974-982. [38] Du L, Zheng Z C, Li T X, et al.Aggregate-associated carbon compositions explain the variation of carbon sequestration in soils after long-term planting of different tea varieties[J]. Science of the Total Environment, 2023, 856: 159227. doi: 10.1016/j.scitotenv.2022.159227. [39] Puget P, Chenu C, Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science, 2000, 51(4): 595-605. [40] 张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用[J]. 应用生态学报, 2011, 22(7): 1921-1930. Zhang G, Cao Z P, Hu C J.Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1921-1930. [41] Sollins P, Homann P, Caldwell B A.Stabilization and destabilization of soil organic matter: mechanisms and controls[J]. Geoderma, 1996, 74(1/2): 65-105. [42] Von Lützow M, Kögel-Knabner I, Ekschmitt K, et al.Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review[J]. European Journal of Soil Science, 2006, 57(4): 426-445. [43] 李婷, 赵世伟, 李晓晓, 等. 宁南山区不同年限苜蓿地土壤有机质官能团特征[J]. 应用生态学报, 2012, 23(12): 3266-3272. Li T, Zhao S W, Li X X, et al.Characters of soil organic matter functional groups in the fields planted with alfalfa (Medicago sativa) for different years in hilly regions of south Ningxia, Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3266-3272. [44] Yang W H, Li C J, Wang S S, et al.Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil[J]. Applied Soil Ecology, 2021, 166: 104005. doi: 10.1016/j.apsoil.2021.104005. [45] 王月玲, 周凤, 张帆, 等. 施用生物炭对土壤呼吸以及土壤有机碳组分的影响[J]. 环境科学研究, 2017, 30(6): 920-928. Wang Y L, Zhou F, Zhang F, et al.Influence of biochar on soil respiration and soil organic carbon fractions[J]. Research of Environmental Sciences, 2017, 30(6): 920-928. [46] Tian S Y, Zhu B J, Yin R, et al.Organic fertilization promotes crop productivity through changes in soil aggregation[J]. Soil Biology & Biochemistry, 2022, 165: 108533. doi: 10.1016/j.soilbio.2021.108533. [47] Yan T T, Xue J H, Zhou Z D, et al.Effects of biochar-based fertilizer on soil bacterial network structure in a karst mountainous area[J]. Catena, 2021, 206: 105535. doi: 10.1016/j.catena.2021.105535. [48] Panchal P, Preece C, Peñuelas J, et al.Soil carbon sequestration by root exudates[J]. Trends in Plant Science, 2022, 27(8): 749-757. [49] Jiang R, Wang M E, Chen W P, et al.Changes in the integrated functional stability of microbial community under chemical stresses and the impacting factors in field soils[J]. Ecological Indicators, 2020, 110: 105919. doi: 10.1016/j.ecolind.2019.105919. [50] Dong N G, Hu G L, Zhang Y Q, et al.Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard[J]. Scientific Reports, 2021, 11(1): 16882. doi: 10.1038/s41598-021-96472-8. [51] Nwachukwu B C, Ayangbenro A S, Babalola O O.Elucidating the rhizosphere associated bacteria for environmental sustainability[J]. Agriculture, 2021, 11(1): 75. doi: 10.3390/agriculture11010075. [52] Deng F B, Liang C.Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil[J]. Soil Biology & Biochemistry, 2022, 165: 108486. doi: doi.org/10.1016/j.soilbio.2021.108486. [53] 张毅, 杨文浩, 周碧青, 等. 炭基肥对酸化茶园土壤细菌和真菌数量及群落结构的影响[J]. 福建农林大学学报(自然科学版), 2023, 52(2): 247-257. Zhang Y, Yang W H, Zhou B Q, et al.Effect of biochar-based fertilizer on soil bacteria and fungi quantity and community structure in acidified tea garden[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(2): 247-257. [54] 赵锦, 付静, 刘宁宁, 等. 茶树施肥研究进展[J]. 中国土壤与肥料, 2023(3): 226-235. Zhao J, Fu J, Liu N N, et al.Research status and prospects of fertilization in tea plants[J]. Soil and Fertilizer Sciences in China, 2023(3): 226-235. [55] 范晓晖, 陈慕松, 刘文婷, 等. 茶园土壤质量现状及改良措施研究进展[J]. 中国茶叶, 2023, 45(4): 19-24. Fan X H, Chen M S, Liu W T, et al.Research progress on soil quality and improvement measures in tea gardens[J]. China Tea, 2023, 45(4): 19-24. [56] Oh K, Kato T, Li Z P, et al.Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide[J]. Pedosphere, 2006, 16(6): 770-777. [57] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121(3): 787-799. [58] 倪康, 廖万有, 伊晓云, 等. 我国茶园施肥现状与减施潜力分析[J]. 植物营养与肥料学报, 2019, 25(3): 421-432. Ni K, Liao W Y, Yi X Y, et al.Fertilization status and reduction potential in tea gardens of China[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 421-432. [59] 阮建云, 马立锋, 伊晓云, 等. 茶树养分综合管理与减肥增效技术研究[J]. 茶叶科学, 2020, 40(1): 85-95. Ruan J Y, Ma L F, Yi X Y, et al.Integrated nutrient management in tea plantation to reduce chemical fertilizer and increase nutrient use efficiency[J]. Journal of Tea Science, 2020, 40(1): 85-95. [60] 韩文炎, 李强. 茶园施肥现状与无公害茶园高效施肥技术[J]. 中国茶叶, 2002, 24(6): 29-31. Han W Y, Li Q.Fertilization status of tea garden and efficient fertilization technology of pollution-free tea garden[J]. China Tea, 2002, 24(6): 29-31. |