






Journal of Tea Science ›› 2026, Vol. 46 ›› Issue (1): 61-72.
• Research Paper • Previous Articles Next Articles
ZHANG Yunfan1,2, ZHOU Fengjue2, HU Junming1,*, SONG Chuankui3, ZHENG Fuhai1, ZHANG Junhui1, LI Tingting1, LI Yuxiang1
Received:2025-06-07
Revised:2025-09-04
Online:2026-02-15
Published:2026-02-06
CLC Number:
ZHANG Yunfan, ZHOU Fengjue, HU Junming, SONG Chuankui, ZHENG Fuhai, ZHANG Junhui, LI Tingting, LI Yuxiang. Plasma-Activated Sodium Lactate Enhances Secondary Metabolites and Physiological Resistance of Young Tea Plants[J]. Journal of Tea Science, 2026, 46(1): 61-72.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] 张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372. Zhang W J, Rong J, Wei C L, et al.Domestication origins and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372. [2] 林海燕, 曾超珍, 谭斌, 等. 转录组学技术在茶树抗逆性的研究进展[J]. 分子植物育种, 2019, 17(3): 803-810. Lin H Y, Zeng C Z, Tan B, et al.Advances in transcriptomics technology for studying stress resistance in tea plants[J]. Molecular Plant Breeding, 2019, 17(3): 803-810. [3] 韦朝领, 李叶云, 江昌俊. 茶树逆境生理及其分子生物学研究进展[J]. 安徽农业大学学报, 2009, 36(3): 335-339. Wei C L, Li Y Y, Jiang C J.Advances in research on tea plant stress physiology and molecular biology[J]. Journal of Anhui Agricultural University, 2009, 36(3): 335-339. [4] Winkel S B.Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3): 218-223. [5] Baier M, Bittner A, Prescher A, et al.Preparing plants for improved cold tolerance by priming[J]. Plant, Cell & Environment, 2019, 42(3): 782-800. [6] Iqbal S, Akhtar J, Naz T, et al.Root morphological adjustments of crops to improve nutrient use efficiency in limited environments[J]. Communications in Soil Science and Plant Analysis, 2020, 51(19): 2452-2465. [7] Bonfante P, Anca I A.Plants, mycorrhizal fungi, and bacteria: a network of interactions[J]. Annual Review of Microbiology, 2009, 63(1): 363-383. [8] Sun T R, Cang L, Wang Q Y, et al.Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 919-925. [9] Bradu C, Kutasi K, Magureanu M, et al.Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture[J]. Journal of Physics D: Applied Physics, 2020, 53(22): 223001. doi: 10.1088/1361-6463/ ab795a. [10] Adhikari B, Adhikari M, Ghimire B, et al.Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings[J]. Scientific Reports, 2019, 9(1): 16080. doi: 10.1038/s41598-019-52646-z. [11] Nixon D J, Burgess P J, Sanga B N K, et al. A comparison of the responses of mature and young clonal tea to drought[J]. Experimental Agriculture, 2001, 37(3): 391-402. [12] Durak I, Yurtarslanl Z, Canbolat O.A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction[J]. Clinica Chimica Acta, 1993, 214(1): 103-104. [13] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. [14] Oakley B R, Kirsch D R, Morris N R.A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels[J]. Analytical Biochemistry, 1980, 105(1): 361-363. [15] Chen C, Wu Y, Li J, et al.TBtools-Ⅱ: a “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11): 1733-1742. [16] 满佳旭, 高梓琪, 武思敏, 等. 中小叶种茶酯型儿茶素含量测定及亚细胞定位[J]. 湖北农业科学, 2024, 63(5): 98-100. Man J X, Gao Z Q, Wu S M, et al.Determination of ester-type catechin content and subcellular localization in small-leaf tea varieties[J]. Hubei Agricultural Sciences, 2024, 63(5): 98-100. [17] Zhao J, Li P, Xia T, et al.Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model[J]. Critical Reviews in Biotechnology, 2020, 40(5): 667-688. [18] Song J S, Kim S B, Ryu S, et al.Emerging plasma technology that alleviates crop stress during the early growth stages of plants: a review[J]. Frontiers in Plant Science, 2020, 11: 988. doi: 10.3389/fpls.2020.00988. [19] Singh H, Niharika, Lamichhane P, et al.Enhancing crop health and sustainability: exploring the potential of secondary metabolites and non-thermal plasma treatment as alternatives to pesticides[J]. Plant Biotechnology Reports, 2023, 17(6): 803-820. [20] Bennett R N, Wallsgrove R M.Secondary metabolites in plant defence mechanisms[J]. New Phytologist, 1994, 127(4): 617-633. [21] Rhodes D, Verslues P E, Sharp R E.Role or amino acids in abiotic stress resistance [M]. Florida: CRC Press, 1998: 333-370. [22] Chatterjee A, Paul A, Unnati G M, et al.MAPK cascade gene family in Camellia sinensis: in-silico identification, expression profiles and regulatory network analysis[J]. BMC Genomics, 2020, 21(1): 613. doi: 10.1186/s12864- 020-07030-x. [23] Stevens C, Wilson C L, Lu J Y, et al.Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of plant fruits[J]. Crop Protection, 1996, 15(2): 129-134. [24] Perkowski M C, Warpeha K M.Phenylalanine roles in the seed-to-seedling stage: not just an amino acid[J]. Plant Science, 2019, 289: 110223. doi: 10.1016/j.plantsci. 2019.110223. [25] Mori I C, Schroeder J I.Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiology, 2004, 135(2): 702-708. [26] Yang Q, Dong B, Wang L, et al.CDPK6 phosphorylates and stabilizes MYB30 to promote hyperoside biosynthesis that prolongs the duration of full-blooming in okra[J]. Journal of Experimental Botany, 2020, 71(14): 4042-4056. [27] Zhang Q, Li Y, Cao K, et al.Transcriptome and proteome depth analysis indicate ABA, MAPK cascade and Ca2+ signaling co-regulate cold tolerance in Rhododendron chrysanthum Pall[J]. Frontiers in Plant Science, 2023, 14: 1146663. doi: 10.3389/fpls.2023.1146663 [28] Akashi K, Miyake C, Yokota A.Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger[J]. FEBS Letters, 2001, 508(3): 438-442. [29] Kusvuran S, Dasgan H Y, Abak K.Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon[J]. The Scientific World Journal, 2013, 2013(1): 253414. doi: 10.1155/2013/253414. [30] Yokota A, Kawasaki S, Iwano M, et al.Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon[J]. Annals of Botany, 2002, 89(7): 825-832. [31] Yan J, Aznar A, Chalvin C, et al.Increased drought tolerance in plants engineered for low lignin and low xylan content[J]. Biotechnology for Biofuels, 2018, 11(1): 195. doi: 10.1186/s13068-018-1196-7. [32] Tachibana K, Nakamura T.Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water[J]. Journal of Physics D: Applied Physics, 2019, 52(38): 385202. doi: 0.1088/1361-6463/ab2529. [33] 蒋景龙. 外源H2O2对低温胁迫下柑橘叶片抗寒性的影响[J]. 西北植物学报, 2016, 36(3): 499-505. Jiang J L.Effects of exogenous H2O2 on cold tolerance of citrus leaves under low-temperature stress[J]. Acta Botanica Sinica, 2016, 36(3): 499-505. [34] 张琼, 陆銮眉, 戴清霞, 等. 镉胁迫对水仙根系抗氧化系统的影响[J]. 福建农业学报, 2016, 31(6): 591-595. Zhang Q, Lu L M, Dai Q X, et al.Effects of cadmium stress on the antioxidant system of narcissus roots[J]. Journal of Fujian Agriculture, 2016, 31(6): 591-595. [35] Nakano R T, Shimasaki T.Long-term consequences of PTI activation and its manipulation by root-associated microbiota[J]. Plant and Cell Physiology, 2024, 65(5): 681-693. |
| [1] | LIU Enbei, WU Yedie, XU Miaomiao, LING Mingxing, PENG Jing, WANG Jie, WANG Xinchao, WANG Lu. Identification and Expression Regulation Analysis of the CsWCOR413 Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2026, 46(1): 1-19. |
| [2] | ZHOU Hui, CUI You, CHEN Wenjian, DU Yueyang, ZHANG Huan, SU Hongfeng, ZHANG Kaikai, ZHANG Lingyun. Molecular Mechanisms Underlying the Regulation of Anthocyanin Biosynthesis by the Transcription Factor CsMYB75-like-2 in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2026, 46(1): 20-34. |
| [3] | ZHONG Lifan, HU Yunqing, ZHOU Qinyu, YANG Wang, WANG Li, LIU Zhen. Genetic Diversity Analysis and Core Germplasm Construction of Hunan Jietan Tea Based on Agronomic Traits and Whole Genome Sequencing [J]. Journal of Tea Science, 2026, 46(1): 35-49. |
| [4] | LI Duojiao, HU Xinrong, SHEN Yingzi, JIANG Li, YUAN Ming'an, WANG Liyuan, ZHENG Zhaisheng. Effects of Different Paternal Parents on Xenia in the Seed-Leaf Dual-Purpose Tea Cultivar ‘Jincha 18’ [J]. Journal of Tea Science, 2026, 46(1): 50-60. |
| [5] | ZHANG Qian, LIU Panpan, HE Biyun, WANG Zhihui, WU Weiwei, GAO Chenxi, ZENG Wen, SUN Weijiang. Influence of Arbuscular Mycorrhiza Fungi on the Physicochemical Components of Fresh Tea Leaves and Quality of Tea End Products [J]. Journal of Tea Science, 2026, 46(1): 73-88. |
| [6] | MA Siyu, LONG Lixue, LI Zilong, ZHAO Xianwang, HE Pengfei, HE Pengbo, CHEN Linbo, QU Hao, LONG Yaqin, TANG Ping. Isolation and Identification of the Pathogen Causing Anthracnose on Yunnan Large-Leaf Tea Plants and Screening of Antagonistic Bacteria [J]. Journal of Tea Science, 2026, 46(1): 89-100. |
| [7] | QIN Daozheng, ZHANG Tingyu, XIE Kangwen, BI Jianyu, ZHANG Huan, FANG Wei, XU Ye. Clarification of the Identities of the Cicadellid and Fulgoroid Pests in Shaanxi Tea Area and Correction of the Scientific Name of Tea Green Leafhopper in China [J]. Journal of Tea Science, 2026, 46(1): 101-110. |
| [8] | LI Yuanyuan, YAO Mingzhe, JIN Jiqiang. Elucidation of the Molecular Mechanisms Underlying the Formation of the High EGCG3′′Me Content in Tea Germplasms [J]. Journal of Tea Science, 2025, 45(6): 909-919. |
| [9] | SHEN Yingzi, LI Duojiao, HU Xingrong, JIANG Li, ZHENG Zhaisheng, LIU Huikang, YUAN Ming′an. Cloning of the CsPDAT1 Gene from Camellia sinensis and Its Role in Drought Tolerance [J]. Journal of Tea Science, 2025, 45(6): 920-930. |
| [10] | JIAO Haizhen, LI Le, TIAN Shuanghong, TIAN Jianhua, HU Mengqin, LONG Daibin, LÜ Haipeng, LIN Zhi, PENG Yun. Aroma Quality Characteristics and Key Aroma Components Analysis of Green and Black Tea from Four ‘Huangjincha’-Related Cultivars [J]. Journal of Tea Science, 2025, 45(6): 931-942. |
| [11] | LU Li, SHI Yin, WANG Yanxia, HUANG Xiaozhen. Comparative Analysis of Seed Biological Characteristics and Endophytic Bacterial Diversity among Different Individual Plants of Ancient Tea Plants (Camellia sinensis) in Tongzi, Guizhou [J]. Journal of Tea Science, 2025, 45(6): 943-956. |
| [12] | WANG Mengqi, SONG Dapeng, YIN Hongxu, ZHOU Chao, FANG Fengxiang, LI Jiyan, YU Jie, ZHANG Na, DING Shibo. Effect of Geographical Translocation on the Chemical Composition and Metabolome of Green Tea from Camellia sinensis cv. Huangshanzhong [J]. Journal of Tea Science, 2025, 45(6): 957-970. |
| [13] | LU Jian, FU Zhouping, MA Guicen, WANG Dong, HU Kangying, ZHANG Jingjing, CHEN Liyan, ZHANG Yingbin, ZHOU Sujuan, HONG Yiwei, ZHANG Xiangchun, CHEN Hongping, HOU Zhiwei, YU Jizhong. Analysis of Quality Characteristics and Flavor Compound Differences Among Jingshan Green Tea, Matcha and Black Tea [J]. Journal of Tea Science, 2025, 45(6): 971-986. |
| [14] | GAO Ruizhen, LIN Zhiqiang, XIANG Jiaxin, CHEN Yuan, YU Wenquan. Effect of Roasting Temperature on Flavor Quality and Key Compounds of Wuyi Rougui Tea: Based on the Correlation between FTIR and Biochemical Components [J]. Journal of Tea Science, 2025, 45(6): 987-1005. |
| [15] | CHEN Jiaming, GUO Yang, GU Dachuan, LI Jianlong, CHEN Yiyong, HUANG Yanfeng, TANG Jinchi, YANG Ziyin. Screening of Mechanical Harvestable Traits of Tea Cultivars [J]. Journal of Tea Science, 2025, 45(6): 1006-1020. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||