Welcome to Journal of Tea Science,Today is

Journal of Tea Science ›› 2021, Vol. 41 ›› Issue (3): 302-314.doi: 10.13305/j.cnki.jts.2021.03.002

• Research Paper • Previous Articles     Next Articles

Identification of Alcohol Dehydrogenase Gene Family and Their Expression Analysis in the Withering Process of White Tea

GU Mengya, WANG Pengjie, CHEN Xuejin, ZHENG Yucheng, GUO Yongchun, LIN Xinying, GAO Ting, HOU Binghao, YE Naixing*   

  1. College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
  • Received:2020-12-21 Revised:2021-02-22 Online:2021-06-15 Published:2021-06-15

Abstract: Alcohol dehydrogenase (ADH) plays an important role in the formation of tea aroma as one of the key enzymes in the synthesis of fatty acid metabolism pathway. In this study, 19 CsADH gene family members were identified from the chromosome level genome database of tea plants for the first time. Bioinformatics analysis shows that the members of ADH gene family were divided into six subfamilies. Collinearity analysis shows that there were 2, 4 and 12 pairs of collinearity between ADH gene family of Camellia sinensis and Arabidopsis thaliana, Vitis vinifera and Actinidia chinensis, respectively. The tea ADH gene family contains 1-13 exons, which encode 236-669 amino acids with molecular weight of 26.15-73.83 kDa. It is mainly located in cytoplasm and chloroplast, and only CsADH1is located in nucleus. In addition, a large number of cis-acting elements closely related to light responsive, plant growth, stress and phytohormone responsive were found in the upstream promoter region. Fluorescence quantitative detection shows that the expression of CsFDH2 was the highest at 4 h of withering. The expressions of CsADH4 and CsADH10 were the highest at 32 h of withering, which were 4.11 and 3.54 times that of the control respectively. The expression of CsADH3 reached the peak at 48 h of withering, which was slightly higher than that at 32 h of withering. The expression of CsADH-like1 reached the highest value at 40 h of withering. The highest expression of CsADH-like3 was at 24 h of withering. This study provided a reference for exploring the molecular mechanism of alcohol dehydrogenase genes acting on the formation of aliphatic aromatic substances in the withering process of white tea.

Key words: white tea, withering, aroma, ADH gene family, expression analysis

CLC Number: