[1] 常婉秋, 姚宇, 席晓杰, 等. 基于迁移学习和非监督分类的制种玉米遥感识别方法[J]. 农业机械学报, 2024, 55(8): 181-195. Chang W Q, Yao Y, Xi X J, et al.Remote sensing recognition method for seed production maize based on transfer learning and unsupervised classification[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 181-195. [2] 李亚涛. 茶叶采摘机器人的视觉检测与定位技术研究[D]. 杭州: 浙江理工大学, 2022. Li Y T.Research on the visual detection and localization technology of tea harvesting robot [D]. Hangzhou: Zhejiang Sci-Tech University, 2022. [3] 李丽, 卢世博, 任浩, 等. 基于改进YOLO v5的复杂环境下桑树枝干识别定位方法[J]. 农业机械学报, 2024, 55(2): 249-257. Li L, Lu S B, Ren H, et al.Mulberry branch identification and location method based on improved YOLO v5 in complex environment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(2): 249-257. [4] 俞淑燕, 杜晓晨, 冯海林, 等. TTLD-YOLOv7:非结构化环境下茶树病害的检测算法[J]. 茶叶科学, 2024, 44(3): 453-468. Yu S Y, Du X C, Feng H L, et al.TTLD-YOLOv7: an algorithm for detecting tea diseases in an unstructured environment[J]. Journal of Tea Science, 2024, 44(3): 453-468. [5] 洪孔林, 吴明晖, 高博, 等. 基于改进YOLOv7-tiny的茶叶嫩芽分级识别方法[J]. 茶叶科学, 2024, 44(1): 62-74. Hong K L, Wu M H, Gao B, et al.A grading identification method for tea buds based on improved YOLOv7-tiny[J]. Journal of Tea Science, 2024, 44(1): 62-74. [6] Yosinski J, Clune J, Bengio Y, et al.How transferable are features in deep neural networks? [M]//Ghahramani Z, Welling M, Cortes C, et al. Advances in Neural Information Processing Systems 27, Cambridge, MA: MIT Press, 2014. [7] Tan C Q, Sun F C, Kong T, et al.A survey on deep transfer learning[C]//Kůrková V, Manolopoulos Y, Hammer B, et al. Artificial Neural Networks and Machine Learning-ICANN 2018. Cham: Springer Cham, 2018: 270-279. [8] 周立君, 刘宇, 白璐, 等. 一种基于GAN和自适应迁移学习的样本生成方法[J]. 应用光学, 2020, 41(1): 120-126. Zhou L J, Liu Y, Bai L, et al.Sample generation method based on GAN and adaptive transfer learning[J]. Journal of Applied Optics, 2020, 41(1): 120-126. [9] 黎英. 迁移学习在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2021, 57(20): 42-52. Li Y.Review of application of transfer learning in medical lmage analysis[J]. Computer Engineering and Applications, 2021, 57(20): 42-52. [10] Khasawneh N, Faouri E, Fraiwan M.Automatic detection of tomato diseases using deep transfer learning[J]. Applied Sciences, 2022, 12(17): 8467. doi: 10.3390/app12178467. [11] 李平, 马玉琨, 李艳翠, 等. 基于迁移学习的小麦籽粒品种识别研究[J]. 中国农机化学报, 2023, 44(7): 220-228, 280. Li P, Ma Y K, Li Y C, et al.Study on wheat seed variety identification based on transfer learning[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 220-228, 280. [12] 付清华. 基于迁移学习的卷积神经网络花卉识别研究[J]. 科学技术创新, 2023(18): 112-115. Fu Q H.Research on flower recognition of convolution neural network based on transfer learning[J]. Science and Technology Innovation, 2023(18): 112-115. [13] Kleanthous N, Hussain A, Khan W, et al.Deep transfer learning in sheep activity recognition using accelerometer data[J]. Expert Systems with Applications, 2022, 207: 117925. doi: 10.1016/j.eswa.2022.117925. [14] 寇旭鹏, 刘帅君, 麻之润. 基于Faster-RCNN的钢带缺陷检测方法[J]. 中国冶金, 2021, 31(4): 77-83. Kou X P, Liu S J, Ma Z R.Defect detection method of steel strip based on Faster-RCNN[J]. Metallurgy in China, 2021, 31(4): 77-83. [15] Saeed N, King N, Said Z, et al.Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning[J]. Infrared Physics & Technology, 2019, 102: 103048. doi: 10.1016/j.infrared.2019.103048. [16] 俞宝库. 基于迁移学习的车轴故障诊断方法研究[D]. 大连: 大连理工大学, 2022. Yu B K.Research on axle fault diagnosis method based on transfer learning [D]. Dalian: Dalian University of Technology, 2022. [17] 高伟, 周宸, 郭谋发. 基于改进YOLOv4及SR-GAN的绝缘子缺陷辨识研究[J]. 电机与控制学报, 2021, 25(11): 93-104. Gao W, Zhou C, Guo M F.Insulator defect identification via improved YOLOv4 and SR-GAN algorithm[J]. Electric Machines and Control, 2021, 25(11): 93-104 [18] 张龙, 胡燕青, 赵丽娟, 等. 多通道信息融合与深度迁移学习的旋转机械故障诊断[J]. 中国机械工程, 2023, 34(8): 966-975. Zhang L, Hu Y Q, Zhao L J, et al.Multichannel information fusion and deep transfer learning for rotating machinery fault diagnosis[J]. China Mechanical Engineering, 2023, 34(8): 966-975. [19] Bai Y H, Guo Y X, Zhang Q, et al.Multi-network fusion algorithm with transfer learning for green cucumber segmentation and recognition under complex natural environment[J]. Computers and Electronics in Agriculture, 2022, 194: 106789. doi: 10.1016/j.compag.2022.106789. [20] Wang L L, Zhao Y J, Liu S B, et al.Precision detection of dense plums in orchards using the improved YOLOv4 model[J]. Frontiers in Plant Science, 2022, 13: 839269. doi: 10.3389/fpls.2022.839269. [21] 伍子林, 冯德旺, 刘衡伟. 迁移学习在果园病害识别中的应用[J]. 福建电脑, 2023, 39(8): 50-52. Wu Z L, Feng D W, Liu H W.Application of transfer learning in orchard disease identification[J]. Journal of Fujian Computer, 2023, 39(8): 50-52. [22] Yao X Z, Lin H F, Bai D, et al.A small target tea leaf disease detection model combined with transfer learning[J]. Forests, 2024, 15(4): 591. doi: 10.3390/f15040591. [23] 郑子秋, 宋彦, 陈霖, 等. 基于少量标注样本的茶芽目标检测YSVD-Tea算法[J]. 农业机械学报, 2024, 55(8): 301-311. Zheng Z Q, Song Y, Chen L, et al.YSVD-tea algorithm for tea bud object detection based on few annotated samples[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 301-311. [24] Thenmozhi K, Reddy U S.Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and Electronics in Agriculture, 2019, 164: 104906. doi: 10.1016/j.compag.2019.104906. [25] Paymode A S, Malode V B.Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG[J]. Artificial Intelligence in Agriculture, 2022, 6: 23-33. [26] Yang B, Lei Y G, Li X, et al.Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization[J]. Expert Systems with Applications, 2024, 244: 122997. doi: 10.1016/j.eswa.2023.122997. [27] Razavi M, Mavaddati S, Koohi H.ResNet deep models and transfer learning technique for classification and quality detection of rice cultivars[J]. Expert Systems with Applications, 2024, 247: 123276. doi: 10.1016/j.eswa.2024.123276. |