






GAO Ruizhen1, LIN Zhiqiang2,3, XIANG Jiaxin1, CHEN Yuan1,2*, YU Wenquan1,4*
Online:2025-10-31
Published:2025-10-31
Contact:
CHEN Yuan,chenyuan@faas.cn;YU Wenquan,wenquan_yu@yeah.net
CLC Number:
GAO Ruizhen1, LIN Zhiqiang2, 3, XIANG Jiaxin11, CHEN Yuan1, 2, YU Wenquan1, 4. Effect of Roasting Temperature on Flavor Quality and Key Compounds of Wuyi Rougui Tea: Based on the Correlation between FTIR and Biochemical Components[J]. Journal of Tea Science.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://www.tea-science.com/EN/
| [1] Chen S, Liu H H, Zhao X M, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture [J]. Food Research International, 2019, 128: 108778. doi: 10.1016/j.foodres.2019.108778.
[2]
吴宗杰, 欧晓西, 林宏政, 等. 武夷肉桂加工中挥发性成分糖苷结合物和香气品质形成研究[J]. 茶叶科学, 2024, 44(1):
84-100.
[3]
王丽, 官小倩, 余能煌, 等. 不同焙火程度对武夷肉桂品质与抗氧化活性的影响[J]. 茶叶通讯, 2020, 47(2):
282-286.
[4]
黄艳, 孙威江. 闽南乌龙茶烘焙的研究进展[J]. 食品安全质量检测学报, 2015, 6(5): 1525-1529.
[5]
陈泉宾, 邬龄盛, 王振康. 烘焙工艺对乌龙茶美拉德反应产物的影响[J]. 茶叶科学技术, 2014(4): 29-31.
[6] 韩美仪, 刘婧, 胡娜, 等. 红糖生产与贮藏过程美拉德反应及其对红糖品质与安全性的研究进展[J]. 中国调味品, 2023, 48(3): 210-215.
[7] 钟秋生, 彭佳堃, 戴伟东, 等. 基于UPLC-Q-Exactive/MS的不同烘焙处理岩茶化学成分差异分析[J]. 食品科学, 2023, 44(20): 268-282. [8] Jiang Z D, Han Z S, Wen M C, et al. Comprehensive comparison on the chemical metabolites and taste evaluation of tea after roasting using untargeted and pseudotargeted metabolomics [J]. Food Science and Human Wellness, 2022, 11(3): 606-617.
[9] 陈凌芝, 孔亚帅, 王晶晶, 等. 不同焙火程度对信阳毛尖茶感官品质与主要化学成分的影响[J]. 食品科技, 2024, 49(9): 67-73.
[10] 吴全金, 董青华, 孙威江. 基于傅里叶红外光谱的多茶类判别研究[J]. 茶叶科学, 2014, 34(1): 63-70.
[11] 王小虎, 贺愉岚, 朱绮霞, 等. 傅里叶红外光谱鉴定区分凌云白毫古茶树鲜叶[J]. 中国茶叶, 2023, 45(2): 30-35. [12] Xia J, Wang D, Pei L, et al. Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments [J]. Biophysical Chemistry, 2020, 256: 106282. doi: 10.1016/j.bpc.2019.106282. [13] Maram M A, Fadia S Y, Haidy A G, et al. Authentication and discrimination of green tea samples using UV-vis, FTIR and HPLC techniques coupled with chemometrics analysis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164: 653-658. doi: 10.1016/j.jpba.2018.11.036. [14] Fatemeh Y, Heshmatollah E N, Sara D, et al. Phytochemical analysis and antioxidant activity of eight cultivars of tea (Camellia sinensis) and rapid discrimination with FTIR spectroscopy and pattern recognition techniques [J]. Pharmaceutical Sciences, 2023, 29(1): 100-110. [15] Truong N M, Pham V T, Hoang L T A, et al. Chemometric classification of Vietnamese green tea (Camellia sinensis) varieties and origins using elemental profiling and FTIR spectroscopy [J]. International Journal of Food Science and Technology, 2024, 59(12): 9234-9244. [16] Song H J, Kim Y D, Jeong M J, et al. Rapid selection of theanine-rich green tea (Camellia sinensis L.) trees and metabolites profiling by Fourier transform near-infrared (FT-IR) spectroscopy [J]. Plant Biotechnology Reports, 2015, 9(2): 55-65.
[17] 郑华, 陆世银, 苏志恒, 等. FTIR结合PLS-DA鉴别不同陈化时间六堡茶熟茶[J]. 食品工业, 2016, 37(2):
20-22.
[18] 林诚富, 邵文, 王家燚, 等. 基于近红外光谱的木荷木纤维解剖结构PLSR模型构建[J]. 应用生态学报, 2024, 35(10):
2794-2802.
[19] 林燕萍, 刘宝顺, 黄毅彪, 等. 焙火程度对武夷岩茶“大红袍”品质的影响[J]. 食品研究与开发, 2020, 41(22): 49-54.
[20] 谢贺, 萧涵, 胡腾飞, 等. 不同炭焙时间对大红袍感官品质及挥发性化合物的影响[J]. 茶叶科学, 2024, 44(6): 960-972.
[21] 林永胜, 罗婵玉, 陈忠林, 等. 不同精制烘焙工艺对武夷岩茶品质的影响[J]. 福建茶叶, 2016, 38(4): 7-10.
[22] 马春华, 卢福, 吴志锋, 等. 不同焙火程度对武夷岩茶丹桂内含物与感官品质的影响[J]. 食品工程, 2023(3): 22-26.
[23] 黄毅彪, 张见明, 王芳, 等. 武夷岩茶肉桂烘焙技术探讨[J]. 宜春学院学报, 2016, 38(3): 74-77.
[24] 刘永欣. 武夷岩茶初加工工艺技术—以‘肉桂’品种为例[J]. 茶业通报, 2023, 45(2): 80-84.
[25] 林燕萍, 龙乐, 张见明, 等. 不同火功处理的武夷岩茶“白鸡冠”品质差异探究[J]. 食品研究与开发, 2020, 41(17): 90-95. [26] Chen Y J, Kuo P C, Yang M L, et al. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin Oolong teas [J]. Food Research International, 2013, 53(2): 732-743. [27] Zhang H, Qi R L, Mine Y. The impact of oolong and black tea polyphenols on human health [J]. Food Bioscience, 2019, 29: 55-61.
[28] 王丽, 张杨玲, 林芷青, 等. 不同焙火程度对武夷水仙品质和抗氧化活性的影响[J]. 食品工业, 2021, 42(2): 179-182.
[29] 张蕾, 林燕清, 罗理勇, 等. 焙火程度对武夷岩茶品质特性的影响[J]. 食品与机械, 2017, 33(9): 41-46.
[30] 中华全国供销合作总社. 地理标志产品 武夷岩茶: GB/T 18745—2006 [S]. 北京: 中国标准出版社, 2006.
[31] 中华全国供销合作总社. 茶 磨碎试样的制备及其干物质含量测定: GB/T 8303—2013[S]. 北京: 中国标准出版社, 2013.
[32] 中华全国供销合作总社. 茶叶感官审评方法: GB/T 23776—2018[S]. 北京: 中国标准出版社, 2018.
[33] 中华全国供销合作总社. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313—2018[S]. 北京: 中国标准出版社, 2018.
[34] 中华全国供销合作总社. 茶游离氨基酸总量的测定: GB/T 8314—2013[S]. 北京: 中国标准出版社, 2013.
[35] 张正竹. 茶叶生物化学实验教程[M]. 北京: 中国农业出版社, 2009: 44-46.
[36] 卢莉, 王飞权, 林秀国, 等. 传统炭焙工艺过程中武夷岩茶品质变化规律研究[J]. 食品科技, 2018, 43(5): 77-82. [37] Chen Y, Chen C S, Xiang J X, et al. Functional tea extract inhibits cell growth, induces apoptosis, and causes G0/G1 arrest in human hepatocellular carcinoma cell line possibly through reduction in telomerase activity [J]. Foods, 2024, 13(12): 1867. doi: 10.3390/foods13121867. [38] Mohsen S M, Ammar A S M. Total phenolic contents and antioxidant activity of corn tassel extracts [J]. Food Chemistry, 2009, 112(3): 595-598. [39] Cai Y Z, Luo Q, Sun M, et al. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer [J]. Life Sciences, 2004, 74(17): 2157-2184. [40] Benzie I F, Szeto Y T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay [J]. Journal of Agricultural and Food Chemistry, 1999, 47(2): 633-636. [41] Huang R, Xu C M. An overview of the perception and mitigation of astringency associated with phenolic compounds [J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(1): 1036-1074.
[42] 苗爱清, 舒爱民, 胡海涛, 等. 乌龙茶加工过程中色差变化研究[J]. 广东农业科学, 2009(12):
136-138. [43] Prior R L, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements [J]. Journal of Agricultural and Food Chemistry, 2005, 53(10): 4290-4302. [44] Deakin J J. Organic chemistry: miracles from plants [M]. London: Sage Publications, 2024. [45] Li X L, Xu K W, Zhang Y Y, et al. Optical determination of lead chrome green in green tea by fourier transform infrared (FT-IR) transmission spectroscopy [J]. PLoS One, 2017, 12(1): 0169430. doi: 10.1371/journal.pone.0169430. [46] Damiani E. First ATR-FTIR characterization of black, green and white teas (Camellia sinensis) from European tea gardens: a PCA analysis to differentiate leaves from the in-cup infusion [J]. Foods, 2023, 13(1): 109. doi: 10.3390/foods13010109. [47] Pratiwi N, Rosadi D, Abdurakhman. Robust scaling strategies for outlier handling in orthogonal projection to latent structures discriminant analysis (OPLS-DA) [J]. Communications in Statistics-Simulation and Computation, 2025, 54(5): 1542-1555. [48] Yorulmaz H, Cavdaroglu C, Donmez O, et al. Year-to-year differentiation of black tea through spectroscopic and chemometric analysis [J]. European Food Research and Technology, 2025, 251(4): 535-544. [49] Max B, Mattias R, Olivier C, et al. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification [J]. Journal of Chemometrics, 2006, 20(8/9/10): 341-351.
[50] 牛辰瑾, 王静, 杨晓楠, 等. UPLC指纹图谱结合多元数据统计方法分析评价越鞠保和丸质量[J]. 现代药物与临床, 2025, 40(4): 897-902. [51] Peng Y F, Du Z H, Wang X X, et al. From heat to flavor: unlocking new chemical signatures to discriminate Wuyi rock tea under light and moderate roasting [J]. Food Chemistry, 2023, 431: 137148. doi: 10.1016/j.foodchem.2023.137148.
[52] 袁林, 费金彪. 基于红外光谱技术对煤低温氧化规律的研究[J]. 陕西煤炭, 2014, 33(2):
45-48. [53] Liu X B, Liu Y W, Li P, et al. Chemical characterization of Wuyi rock tea with different roasting degrees and their discrimination based on volatile profiles [J]. RSC Advances, 2021, 11(20): 12074-12085. [54] Zhang J, Deng A P, Yang Y, et al. HPLC detection of loss rate and cell migration of HUVECs in a proanthocyanidin cross-linked recombinant human collagen-peptide (RHC)-chitosan scaffold [J]. Materials Science and Engineering: C, 2015, 56: 555-563. doi: 10.1016/j.msec.2015.07.019. [55] Krysa M, Szymanska-chargot M, Zdunek A. FT-IR and FT-Raman fingerprints of flavonoids: a review [J]. Food Chemistry, 2022, 393: 133430. doi: 10.1016/j.foodchem.2022.133430. [56] Lin X H, Sun D W. Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses [J]. Trends in Food Science & Technology, 2020, 104: 163-176. doi: 10.1016/j.tifs.2020.06.009. [57] Rather L J, Shahid U I, Shabbir M, et al. Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants [J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3041-3049. [58] Szymansk-chargot M, Zdunek A. Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process [J]. Food Biophysics, 2013, 8(1): 29-42.
[59] 王丽, 官晓倩, 余能煌, 等. 不同焙火程度对武夷岩茶品质和抗氧化活性的影响[J]. 食品科技, 2020, 45(8): 68-74.
[60] 王飞, 孙云, 周子维, 等. 不同焙火程度对闽北乌龙茶化学品质的影响[J]. 宁德师范学院学报(自然科学版), 2023, 35(4): 407-413.
[61] 钟秋生, 林郑和, 陈常颂, 等. 烘焙温度对九龙袍品种乌龙茶生化品质的影响[J]. 茶叶科学, 2014, 34(1): 9-20.
[62]
陈锦. 发酵型茶中阿魏酸及其抗氧化研究[D]. 长沙: 湖南农业大学, 2015.
[63]
郭雯飞. 茶叶香气生成机理的研究[J]. 中国茶叶加工, 1996(4): 34-37.
[64]
项雷文, 陈文韬. 美拉德反应对乌龙茶品质形成的影响[J]. 化学工程与装备, 2012(7):
13-17.
[65]
李少华, 刘安兴, 王飞权. 武夷岩茶制作工艺对茶叶品质的影响[J]. 武夷学院学报, 2015, 34(9):
11-14. |
| [1] | REN Guangxin, JIN Shanshan, LI Luqing, NING Jingming, ZHANG Zhengzhu. Research Progress of Near-infrared Spectroscopy in Tea Quality Control and Equipment Development [J]. Journal of Tea Science, 2020, 40(6): 707-714. |
| [2] | LU Li, CHENG Xi, ZHANG Bo, SHEN Xiaoxia, LIU Yan, XIONG Li, YUAN Xiao, LI Yuanhua, LI Xinghui. Establishment of Predictive Model for Quantitative Analysis of Tea Polyphenols and Caffeine of Souchong by Near Infrared Spectroscopy [J]. Journal of Tea Science, 2020, 40(5): 689-695. |
| [3] | ZHOU Jian, CHENG HaoP, WANG Li-yuan. Recent Advance on the Application of Near-infrared Spectroscopy in Tea [J]. Journal of Tea Science, 2008, 28(4): 294-300. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||