Welcome to Journal of Tea Science,Today is

Genetic Mapping of First Generation of Backcross in Tea by RAPD and ISSR Markers

  • HUANG Fu-ping ,
  • LIANG Yue-rong ,
  • LU Jian-lian ,
  • CHEN Rong-bing
Expand
  • 1. Zhejiang University Tea Research Institute, Hangzhou 310029, China;
    2. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an 355000, China;
    3. Damin Foodstuff (Zhangzhou) Ltd, Zhangzhou 363000, China

Received date: 2006-02-13

  Revised date: 2006-04-23

  Online published: 2019-09-11

Abstract

The segregation mode for 94 plants in first generation of back cross (BC1) of tea cultivar Fudingdabaicha were investigated using 14 RAPD primers and 20 ISSR primers. One hundred and seventy four segregation loci was identified. Among the 174 loci, 90 loci or 51.7% were segregated at the expected Mendelian ratio of 1:1, in which 63 belonged to ISSR loci and 27 belonged to RAPD loci, and 36 loci segregated in the ratios of 3:1 or 1:3. Sixty-two of the 126 loci with segregation ratios of 1:1, 3:1 and 1:3 were included in 7 linkage groups through linkage mapping by Mapmaker EXP 3.0 software and the other 64 loci were not included in the 7 linkage groups because of their far genetic distance. This map concluded 46 RAPD markers and 16 ISSR markers, covering distance of 1180.9βcM, with average distance of 20.1βcM. The linkage group LG4 covered the farthest genetic distance with 309.3βcM and group LG6 had the largest number of markers, with 18 loci and its average distance being 15.7βcM.

Cite this article

HUANG Fu-ping , LIANG Yue-rong , LU Jian-lian , CHEN Rong-bing . Genetic Mapping of First Generation of Backcross in Tea by RAPD and ISSR Markers[J]. Journal of Tea Science, 2006 , 26(3) : 171 -176 . DOI: 10.13305/j.cnki.jts.2006.03.003

References

[1] Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus Grandis and Eucalyptus urophylla using a pseudo-testcross:mapping strategy and RAPD markers[J]. Genetics,1994, 137(4): 1121~1137.
[2] 田中淳一. RAPDをぺ—スしたチャの连锁地图の作成と遗传解析への利用の可能性[J]. 茶业研究报告, 1996, 84(别册): 44~45.
[3] Hackett C A, Wachira F N, Paul S, et al..Construction of a genetic linkage map for Camellia sinensis (tea)[J]. Heredity, 2000, 85(4): 346~355.
[4] 黄建安, 李家贤, 黄意欢, 等. 茶树AFLP分子连锁图谱的构建[J]. 茶叶科学, 2005, 25(1): 7~15.
[5] 梁月荣, 田中淳一. 应用RAPD分子标记分析“晚绿”品种的杂交亲本[J]. 茶叶科学, 2000, 20(1): 22~26.
[6] 吴颖, 梁月荣, 梁慧玲, 等. “香山早”茶树品系的DNA指纹鉴定研究[J]. 茶叶, 2004, 30(2): 82~84.
[7] 杜金昆, 姚颖垠. 普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR分子标记遗传差异研究[J]. 遗传学报, 2002, 29(5): 445~452.
[8] 刘仁虎, 孟金陵, MapDraw. 在Excel中绘制遗传连锁图的宏[J]. 遗传, 2003, 25(3): 317~321.
[9] 张新叶, 尹佟明, 诸葛强, 等. 利用RAPD标记构建美洲黑杨×欧美杨分子标记图谱[J]. 遗传, 2000, 22(4): 209~213.
[10] Wu R. L, Han Y F, Hu J J, et al. An integrated genetic map of Populus deltoids based on amplified fragment length polymorphism[J]. Theoretical and Applied Genetics, 2000(100): 1249~1256.
[11] Afliff M A, Lawrence G J ,Ellis J G, et al. Heterduplex molecules formed between sequences cause nonparental RAPD bands[J]. Nucleic Acid Res, 1994(22): 1632~1636.
[12] Lan T H, Delmonte T A, Reischman K P, et al. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana[J]. Genome Research, 2000(10): 776~788.
[13] Maliepaard C, Alston F H, Arkel G V, et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) Using multi-alletic markers[J]. Theoretical and Applied Genetics, 1998(97): 60~73.
[14] Peng Y, Schertz K F, Cartinhour S, et al. Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map construcyed in a population of recombinant inbred lines[J]. Plant breeding, 1999(118): 225~235.
[15] Lespinasse D, Rodier G M, Grivet L, et al. A saturated genetic linkage map of rubber tree(Hevea Spp.) based on RFLP,AFLP, microsatellite, and isoxyme markers[J]. Theoretical and Applied Genetics, 2000(100): 127~138.
Outlines

/