Journal of Tea Science ›› 2020, Vol. 40 ›› Issue (4): 431-440.doi: 10.13305/j.cnki.jts.2020.04.001
• Review • Next Articles
WANG Shaomei1,2, LI Xiaojun1,2, SONG Wenming3, PAN Lianyun4,*
Received:
2019-11-19
Revised:
2019-11-19
Online:
2020-08-15
Published:
2020-08-18
CLC Number:
WANG Shaomei, LI Xiaojun, SONG Wenming, PAN Lianyun. Research Progress of Gallic Acid in Puer Tea and Its Improvement of Diet Induced Glucose and Lipid Metabolism Disorder[J]. Journal of Tea Science, 2020, 40(4): 431-440.
[1] | Chen L, Chen X W, Huang X, et al.Regulation of glucose and lipid metabolism in health and disease[J]. Science China Life Sciences, 2019, 62: 1420-1458. |
[2] | Palermo A, Tuccinardi D, Defeudis G, et al.BMI and BMD: The potential interplay between obesity and bone fragility[J]. International Journal of Environmental Research and Public Health, 2016, 13(6): 544. doi: 10.3390/ijerph13060544. |
[3] | 折改梅, 张香兰, 陈可可, 等. 茶氨酸和没食子酸在普洱茶中的含量变化[J]. 云南植物研究, 2005, 27(5): 572-576.She G M, Zhang X L, Chen K K, et al.Content variation of theanine and gallic acid in Pu-er tea[J]. Acta Botanica Yunnanica, 2005, 27(5): 572-576. |
[4] | 吴桢. 普洱茶渥堆发酵过程中主要生化成分的变化[D]. 重庆: 西南大学, 2008.Wu Z.The variation of chemical component during the fermentation procedure of Pu'er tea [D]. Chongqing: Southwest University, 2008. |
[5] | Pedan V, Rohn S, Holinger M, et al.Bioactive compound fingerprint analysis of aged raw Pu'er tea and young ripened Pu'er tea[J]. Molecules, 2018, 23(8): 1931. doi: 10.3390/molecules23081931. |
[6] | Shao W, Powell C, Clifford M N.The analysis by HPLC of green, black and Pu'er teas produced in Yunnan[J]. Journal of the Science of Food and Agriculture, 1995, 69(4): 535-540. |
[7] | Lv H P, Zhang Y J, Lin Z, et al.Processing and chemical constituents of Pu-erh tea: A review[J]. Food Research International, 2013, 53(2): 608-618. |
[8] | 周志宏, 杨崇仁. 云南普洱茶原料晒青毛茶的化学成分[J]. 云南植物研究, 2000(3): 343-350.Zhou Z H, Yang C R.Chemical constituents of crude green tea, the material of Pu-er tea in Yunnan[J]. Acta Botanica Yunnanica, 2000(3): 343-350. |
[9] | 张雯洁, 刘玉清, 李兴从, 等. 云南“生态茶”的化学成分[J]. 云南植物研究, 1995(2): 204-208.Zhang W J, Liu Y Q, Li X C, et al.Chemical constituents of “Ecolocical tea” from Yunnan[J]. Acta Botanica Yunnanica. 1995(2): 204-208. |
[10] | Diepeningen A D V, Debets A J M, Varga J, et al. Efficient degradation of tannic acid by black Aspergillus species[J]. Fungal Biology, 2004, 108(8): 919-925. |
[11] | Mukherjee G, Banerjee R.Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus[J]. Journal of Basic Microbiology, 2004, 44(1): 42-48. |
[12] | 郭鲁宏, 杨顺楷. 利用固定化黑曲霉单宁酶制备没食子酸的研究[J]. 生物工程学报, 2000(5): 614-617.Guo L H, Yan S K.Study on gallic acid preparation by using immobilized tannase from Aspergillus niger[J]. Chinese Journal of Biotechnology, 2000(5): 614-617. |
[13] | Anaingsih V K, Sharma A, Zhou W.Green tea catechins during food processing and storage: A review on stability and detection[J]. Food Research International, 2013, 50(2): 469-479. |
[14] | Macedo J A, Ferreira L R, Camara L E, et al.Chemopreventive potential of the tannase-mediated biotransformation of green tea[J]. Food Chemistry, 2012, 133(2): 358-365. |
[15] | Tanaka T, Umeki H, Nagai S, et al.Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder[J]. Food Chemistry, 2012, 134(1): 276-281. |
[16] | Park Y, Lee J, Hong V S, et al.Identification of KMU-3, a novel derivative of gallic acid, as an inhibitor of adipogenesis[J]. Plos One, 2014, 9(10): e109344. doi: 10.1371/journal.pone.0109344. |
[17] | 吕海鹏, 林智, 谷记平, 等. 普洱茶中的没食子酸研究[J]. 茶叶科学, 2007, 27(2): 104-110.Lv H P, Lin Z, Gu J P, et al.Study on the gallic acid in Pu-erh tea[J]. Journal of Tea Science, 2007, 27(2): 104-110. |
[18] | 李肖玲, 崔岚, 祝德秋. 没食子酸生物学作用的研究进展[J]. 中国药师, 2004(10): 767-769.Li X L, Cui L, Zhu D Q.Research progress on the biological effects of gallic acid[J]. China Pharmacist, 2004(10): 767-769. |
[19] | 张冬英, 邵宛芳, 刘仲华, 等. 普洱茶中没食子酸对过氧化物酶体增殖激活受体作用研究[J]. 营养学报, 2009, 31(1): 47-50.Zhang D Y, Shao W F, Liu Z H, et al.Study of gallic acid in Pu-erh tea on the peroxisome proliferators activated receptors function[J]. Acta Nutrimenta Sinica, 2009, 31(1): 47-50. |
[20] | Gao X, Xie Q, Kong P, et al.Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J]. Infection and Immunity, 2017, 86(1): e00601-17. doi: 10.1128/IAI.00601-17. |
[21] | Huang H, Lin J.Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet[J]. Food & Function, 2012, 3(2): 170-177. |
[22] | Gong J, Peng C, Chen T, et al.Effects of theabrownin from Pu-erh Tea on the metabolism of serum lipids in rats: mechanism of action[J]. Journal of Food Science, 2010, 75(6): 182-189. |
[23] | Du W, Peng S, Liu Z, et al.Hypoglycemic effect of the water extract of Pu-erh tea[J]. Journal of Agricultural and Food Chemistry, 2012, 60(40): 10126-10132. |
[24] | Kubota K, Sumi S, Tojo H, et al.Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract[J]. Nutrition Research, 2011, 31(6): 421-428. |
[25] | Silva G, Ferraresi C, De Almeida R T, et al. Insulin resistance is improved in high-fat fed mice by photobiomodulation therapy at 630 nm[J]. Journal of Biophotonics, 2020, 13(3): e201960140. doi: 10.1002/jbio.201960140. |
[26] | Collison K S, Saleh S M, Bakheet R H, et al.Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55[J]. Obesity (Silver Spring, Md), 2009, 17(11): 2003-2013. |
[27] | Samuel V T.Fructose induced lipogenesis: from sugar to fat to insulin resistance[J]. Trends in endocrinology and metabolism: TEM, 2011, 22(2): 60-65. |
[28] | Oi Y, Hou I, Fujita H, et al.Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid[J]. Phytotherapyresearch: PTR, 2012, 26(4): 475-481. |
[29] | Zeng L, Yan J, Luo L, et al.Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes[J]. Food & Function, 2015, 6(6): 2008-2016. |
[30] | Zeng X, Sheng Z, Li X, et al.In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid[J]. Journal of the Science of Food and Agriculture, 2019, 99(15): 6882-6892. |
[31] | Gandhi G R, Jothi G, Antony P J, et al.Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway[J]. European Journal of Pharmacology, 2014, 745(15): 201-216. |
[32] | Hsu C, Yen G.Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats[J]. British Journal of Nutrition, 2007, 98(4): 727-735. |
[33] | Huang D W, Chang W C, Wu J S, et al.Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet[J]. Nutrition Research, 2016, 36(2): 150-160. |
[34] | Paraíso A F, Sousa J N, Andrade J M, et al.Oral gallic acid improves metabolic profile by modulating SIRT1 expression in obese mice brown adipose tissue: A molecular and bioinformatic approach[J]. Life sciences, 2019, 237(11): 116914. doi: 10.1016/j.lfs.2019.116914. |
[35] | Bak E J, Kim J, Jang S, et al.Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice[J]. Scandinavian Journal of Clinical & Laboratory Investigation, 2013, 73(8): 607-614. |
[36] | Hsu C, Huang S, Yen G.Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 Preadipocytes in Relation to their antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2006, 54(12): 4191-4197. |
[37] | Variya B C, Bakrania A K, Patel S S.Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling[J]. Phytomedicine, 2019, 73: 152906. doi: 10.1016/j.phymed.2019.152906. |
[38] | 吕季桦, 孙璐西. 普洱茶抑制HepG2细胞株生合成胆固醇之有效成分探讨[C]//中国茶叶学会. 第四届海峡两岸茶业学术研讨会论文集, 2006.Lv J H, Sun L X.Investigation of Pu-erh tea active principles to inhibitthe cholesterol synthesis in Hep G2cell line[C]// China Tea Scienc Society. The Fourth Cross-Straits Tea Industry Proceedings, 2006. |
[39] | Way T, Lin H, Kuo D, et al.Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(12): 5257-5264. |
[40] | Elrokh E M, Yassin N A Z, Elshenawy S M, et al. Antihypercholesterolaemic effect of ginger rhizome (Zingiber officinale) in rats[J]. Inflammopharmacology, 2010, 18(6): 309-315. |
[41] | Okuno A, Tamemoto H, Tobe K, et al.Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats[J]. Journal of Clinical Investigation, 1998, 101(6): 1354-1361. |
[42] | Chao L C, Marcussamuels B, Mason M, et al.Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones[J]. Journal of Clinical Investigation, 2000, 106(10): 1221-1228. |
[43] | Cao Z, Umek R M, Mcknight S L.Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells[J]. Genes & Development, 1991, 5(9): 1538-1552. |
[44] | Farmer S R.Transcriptional control of adipocyte formation[J]. Cell Metabolism, 2006, 4(4): 263-273. |
[45] | Furuyashiki T, Nagayasu H, Aoki Y, et al.Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARγ2 and C/EBPα in 3T3-L1 cells[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(11): 2353-2359. |
[46] | Huang D W, Shen S C.Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes[J]. Journal of Functional Foods, 2012, 4(1): 358-366. |
[47] | Saltiel A R, Kahn C R.Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865): 799-806. |
[48] | Ferrer J C, Favre C, Gomis R R, et al.Control of glycogen deposition[J]. FEBS Letters, 2003, 546(1): 127-132. |
[49] | Cannon B, Nedergaard J.Brown adipose tissue: function and physiological significance[J]. Physiological Reviews, 2004, 84(1): 277-359. |
[50] | Oelkrug R, Polymeropoulos E T, Jastroch M.Brown adipose tissue: physiological function and evolutionary significance[J]. Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology, 2015, 185(6): 587-606. |
[51] | Bartelt A, Heeren J.Adipose tissue browning and metabolic health[J]. Nature Reviews Endocrinology, 2014, 10(1): 24-36. |
[52] | Doan K V, Ko C M, Kinyua A W, et al.Gallic acid regulates body weight and glucose homeostasis through AMPK activation[J]. Endocrinology, 2015, 156(1): 157-168. |
[53] | Oneill H M, Holloway G P, Steinberg G R.AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity[J]. Molecular and Cellular Endocrinology, 2013, 366(2): 135-151. |
[54] | Hardie D G.AMPK: a target for drugs and natural products with effects on both diabetes and cancer[J]. Diabetes, 2013, 62(7): 2164-2172. |
[55] | Liesa M, Shirihai O S.Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure[J]. Cell Metabolism, 2013, 17(4): 491-506. |
[56] | Kim J, Kundu M, Viollet B, et al.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology, 2011, 13(2): 132-141. |
[57] | Zhao M, Klionsky D J.AMPK-dependent phosphorylation of ULK1 induces autophagy[J]. Cell Metabolism, 2011, 13(2): 119-120. |
[58] | Jermendy G.PPARγ agonists: Antidiabetic drugs with a potential role in the treatment of diseases other than diabetes[J]. Diabetes Research and Clinical Practice, 2007, 78(3): 29-39. |
[59] | Latha R C R, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats[J]. Chemico-Biological Interactions, 2011, 189(1): 112-118. |
[60] | Goldstein B J.Insulin resistance as the core defect in type 2 diabetes mellitus[J]. American Journal of Cardiology, 2002, 90(5): 3-10. |
[61] | Makihara H, Koike Y, Ohta M, et al.Gallic acid, the active ingredient of terminalia bellirica, enhances adipocyte differentiation and adiponectin secretion[J]. Biological & Pharmaceutical Bulletin, 2016, 39(7): 1137-1143. |
[62] | Hardie D G.AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10): 774-785. |
[63] | Jager S, Handschin C, Stpierre J, et al.AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(29): 12017-12022. |
[64] | Lagouge M, Argmann C A, Gerharthines Z, et al.Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α[J]. Cell, 2006, 127(6): 1109-1122. |
[65] | Canto C, Auwerx J.PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure[J]. Current Opinion in Lipidology, 2009, 20(2): 98-105. |
[66] | Fulco M, Cen Y, Zhao P, et al.Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt[J]. Developmental Cell, 2008, 14(5): 661-673. |
[67] | Pfluger P T, Herranz D, Velascomiguel S, et al.Sirt1 protects against high-fat diet-induced metabolic damage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9793-9798. |
[68] | Michan S, Sinclair D C.Sirtuins in mammals: insights into their biological function[J]. Biochemical Journal, 2007, 404(1): 1-13. |
[69] | Kelly G.A Review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1[J]. Alternative Medicine Review: A Journal of Clinical Therapeutic, 2010, 15(3): 245-263. |
[70] | Ramadori G, Fujikawa T, Fukuda M, et al.SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity[J]. Cell Metabolism, 2010, 12(1): 78-87. |
[71] | Erion D M, Yonemitsu S, Nie Y, et al.SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11288-11293. |
[72] | Kim Y D, Park K G, Lee Y S, et al.Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP[J]. Diabetes, 2008, 57(2): 306-314. |
[73] | Fullerton M D, Galic S, Marcinko K, et al.Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin[J]. Nature Medicine, 2013, 19(12): 1649-1654. |
[74] | Kido Y, Nakae J, Accili D.The insulin receptor and its cellular targets[J]. The Journal of Clinical Endocrinology and Metabolism, 2001, 86(3): 972-979. |
[75] | White M F.Insulin signaling in health and disease[J]. Science, 2003, 302(5651): 1710-1711. |
[76] | Lietzke S E, Bose S, Cronin T C, et al.Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains[J]. Molecular Cell, 2000, 6(2): 385-394. |
[77] | Kim Y B, Peroni O D, Franke T F, et al.Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats[J]. Diabetes, 2000, 49(5): 847-856. |
[78] | Cho H, Mu J, Kim J K, et al.Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ)[J]. Science, 2001, 292(5522): 1728-1731. |
[79] | Katome T, Obata T, Matsushima R, et al.Use of RNA Interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/Protein kinase B isoforms in insulin actions[J]. Journal of Biological Chemistry, 2003, 278(30): 28312-28323. |
[80] | Tzatsos A, Kandror K V.Nutrients suppress phosphatidylinositol 3-Kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation[J]. Molecular and Cellular Biology, 2006, 26(1): 63-76. |
[81] | Ma X, Tsuda S, Yang X, et al.Pu-erh tea hot-water extract activates Akt and induces insulin-independent glucose transport in rat skeletal muscle[J]. Journal of Medicinal Food, 2013, 16(3): 259-262. |
[82] | Tzeng T, Liou S, Liu I.Myricetin ameliorates defective post-receptor insulin signaling via β-endorphin signaling in the skeletal muscles of fructose-fed rats[J]. Evidence-based Complementary and Alternative Medicine, 2011: 150752. doi: 10.1093/ecam/neq017. |
[83] | Soccio R E, Chen E R, Lazar M A.Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes[J]. Cell Metabolism, 2014, 20(4): 573-591. |
[84] | Plutzky J.PPARs as Therapeutic targets: reverse cardiology?[J]. Science, 2003, 302(5644): 406-407. |
[85] | Sharma B R, Kim H J, Rhyu D Y.Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes[J]. Journal of Translational Medicine, 2015, 13(1): 62. doi: 10.1186/s12967-015-0412-5. |
[1] | LU Zhong-wei, JIANG Xiao-lan, LIU Ya-jun, LIU Li, GAO Li-ping, XIA Tao. Preparation of Gallic Acid Derivatives by Solid-phase Extraction Cartridge Coupled with Preparative High Performance Liquid Chromatography from Tea Plant [J]. Journal of Tea Science, 2012, 32(6): 494-499. |
[2] | YANG Rui-juan, LU Jie, YAN Liang, YANG Liu-xia, LI Chen-chen, JIANG Shu, SHENG Jun. Isolation and Identification of Thermophilic Fungi during the Fermentation of Puer Tea [J]. Journal of Tea Science, 2011, 31(4): 371-378. |
[3] | MA Wei-guang, HUANG Zhi-pu, YOU Wen-long, LI Jin-shan, ZENG Guang-yuan, LIU Yu-qing. Research on the Acute Toxicity of Formulated Puer Tea [J]. Journal of Tea Science, 2010, 30(1): 9-12. |
[4] | ZHANG Dong-ying, SHAO Wan-fang, LIU Zhong-hua, LIU Ya-lin, HUANG Ye-wei. Research on the Anti-diabetes and Anti-hyperlipidenmia Function of Monomers in Pu-erh Tea [J]. Journal of Tea Science, 2009, 29(1): 41-46. |
[5] | LU Hai-peng, LIN Zhi, GU Ji-ping, GUO Li, TAN Jun-feng. Study on the Gallic Acid in Pu-erh Tea [J]. Journal of Tea Science, 2007, 27(2): 104-110. |
[6] | ZHOU Hong-jie, LI Jia-hua, ZHAO Long-fei, Han Jun, YANG Xing-ji, YANG Wei, WU Xin-zhuang. Study on Main Microbes on Quality Formation of Yunnan Puer Tea during Pile-fermentation Process [J]. Journal of Tea Science, 2004, 24(3): 212-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|