Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (6): 559-568.doi: 10.13305/j.cnki.jts.2018.06.002
Previous Articles Next Articles
CHEN Jiangfei1, YU Jinming1, YANG Jiankun1, YU Youben1, XIAO Bin1, YANG Yajun1,2, WANG Weidong1,*
Received:
2018-03-16
Revised:
2018-07-25
Online:
2018-12-15
Published:
2019-12-15
CLC Number:
CHEN Jiangfei, YU Jinming, YANG Jiankun, YU Youben, XIAO Bin, YANG Yajun, WANG Weidong. Cloning and Expression Analysis of Na+/H+ Antiporter Gene CsNHX1 and CsNHX2 in Tea Plant (Camellia sinensis)[J]. Journal of Tea Science, 2018, 38(6): 559-568.
[1] | 王新超, 杨亚军. 茶树抗性育种研究现状[J]. 茶叶科学, 2003, 23(2): 94-98. |
[2] | Pardo J M, Cubero B, Leidi E O, et al.Alkali cation exchangers: roles in cellular homeostasis and stress tolerance[J]. Journal of Experimental Botany, 2006, 57(5): 1181-1199. |
[3] | Brett C L, Donowitz M, Rao R.Evolutionary origins of eukaryotic sodium/proton exchangers[J]. American Journal of Physiology Cell Physiology, 2005, 288(2): C223-C239. |
[4] | Apse M P, Sottosanto J B, Blumwald E.Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter[J]. Plant Journal for Cell & Molecular Biology, 2003, 36(2): 229-239. |
[5] | Bassil E, Tajima H, Liang Y C, et al.The Arabidopsis Na+/H+Antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction[J]. Plant Cell, 2011, 23(9): 3482-3497. |
[6] | Yamaguchi T, Fukadatanaka S, Inagaki Y, et al.Genes encoding the vacuolar Na+/H+ exchanger and flower coloration[J]. Plant & Cell Physiology, 2001, 42(5): 451-461. |
[7] | Rodríguezrosales M P, Francisco J G, Huertas R M, et al.Plant NHX cation/proton antiporters[J]. 2009, 4(4): 265-276. |
[8] | Zhang H, Liu Y X, Xu Y, et al.A newly isolated Na+/H+ antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana[J]. Plant Cell Tissue & Organ Culture, 2012, 110(2): 189-200. |
[9] | Dacosta M.Research advances in mechanisms of turf grass tolerance to abiotic stresses: From Physiology to Molecular Biology[J]. Critical Reviews in Plant Sciences, 2014, 33(2/3): 141-189. |
[10] | Quintero F J, Blatt M R, Pardo J M.Functional conservation between yeast and plant endosomal Na+/H+ antiporters[J]. Febs Letters, 2000, 471(2): 224-228. |
[11] | Fukuda A, Nakamura A, Tagiri A, et al.Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J]. Plant & Cell Physiology, 2004, 45(2): 146-159. |
[12] | Yokoi S, Quintero F J, Cubero B, et al.Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. Plant Journal for Cell & Molecular Biology, 2010, 30(5): 529-539. |
[13] | Venema K, Belver A, Marin-Manzano M C, et al. A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants[J]. Journal of Biological Chemistry, 2003, 278(25): 22453-22459. |
[14] | Porat R, Pavoncello D, Ben G.A heat treatment induced the expression of a Na+/H+ antiport gene (cNHX1) in citrus fruit[J]. Plant Science, 2002, 162(6): 957-963. |
[15] | Li W Y, FRANCISCA L I, Wong F L, et al.Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells[J]. Plant Cell & Environment, 2010, 29(6): 1122-1137. |
[16] | Wu C A, Yang G D, Meng Q W, et al.The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress[J]. Wiley, 2004, 45(5): 600-607. |
[17] | 卜华虎. 玉米Na+/H+质子泵ZmNHX1功能的初步研究[D]. 北京: 中央民族大学, 2011. |
[18] | 俞嘉宁. 小麦耐旱、耐盐相关基因的克隆、分析与功能研究[D]. 咸阳: 西北农林科技大学, 2003. |
[19] | 郭俊红, 王伟东, 谷星, 等. 茶树WRKY转录因子基因CsWRKY57的克隆及表达分析[J]. 茶叶科学, 2017, 37(4): 411-419. |
[20] | 王伟东. 高温和干旱胁迫下茶树转录组分析及Histone H1基因的功能鉴定[D]. 南京: 南京农业大学, 2016. |
[21] | Hao X Y, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. |
[22] | Kenneth J, Livak Thomas D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Method, 2001, 25(4): 402-408. |
[23] | 刘威, 李慧, 蔺经, 等. 杜梨PbNHX1基因的克隆、表达分析及功能验证[J]. 果树学报, 2018, 35(2): 137-146. |
[24] | Hamada A, Shono M, Xia T, et al.Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini[J]. Plant Molecular Biology. 2001, 46(1): 35-42. |
[25] | Gaxiola R A, Rao R. Sherman A.et al.The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast[J]. Proceedings of the national academy of sciences of the United States of America, 1999, 96(4): 1480-1485. |
[26] | Fukuda A, Yazaki Y, Ishikawa T, et al.Na+/H+ antiporter in tonoplast vesicles from rice roots[J]. Plant & Cell Physiology, 1998, 39(2): 196-201. |
[27] | 张雨良, 张智俊, 杨峰山, 等. 新疆盐生植物车前PmNHX1基因的克隆及生物信息学分析[J]. 中国生物工程杂志, 2009, 29(1): 27-33. |
[28] | Bulle M, Yarra R, Abbagani S.Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene[J]. Molecular Breeding. 2016, 36(4): 36. |
[29] | Qiao W H, Zhao X Y, Li W, et al.Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants[J]. Plant Cell Reports. 2007, 26(9): 1663-1672. |
[30] | Alhassan M, Daniso E, Boscaiu M, et al.Expression of the vacuolar Na+/H+ antiporter gene (NHX1) in three Plantago species differing in salt tolerance[J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 2015, 72(2): 441-442. |
[31] | Brini F, Hanin M, Mezghani I, et al.Overexpression of wheat Na+/H+ antiporter TaNHX1 and H+-pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plants[J]. Journal of Experimental Botany, 2007, 58(2): 301-307. |
[32] | Sun M H, Ma Q J, Liu X, et al.Molecular cloning and functional characterization of MdNHX1 reveals its involvement in salt tolerance in apple calli and Arabidopsis[J]. Scientia Horticulturae, 2017, 215(27): 126-133. |
[33] | Wang L, Ma Y K, Li N N, et al.Isolation and characterization of a tonoplast Na+/H+ antiporter from the halophyte Nitraria sibirica[J]. Biologia Plantarum, 2016, 60(1): 1-10. |
[34] | Munns R, Sharp R E.Involvement of abscisic acid in controlling plant growth in soil of low water potential[J]. Functional Plant Biology, 1993, 20(20): 425-437. |
[35] | Fukuda A, Nakamura A, Hara N, et al.Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188. |
[36] | Liang M, Lin M, Lin Z, et al.Identification, functional characterization, and expression pattern of a NaCl inducible vacuolar Na+/H+ antiporter in chicory (Cichorium intybus L.)[J]. Plant Growth Regulation, 2015, 75(3): 605-614. |
[37] | Adler G, Blumwald E, Bar-Zvi D.The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor[J]. Planta, 2010, 232(1): 187-195. |
[38] | Afaq A M, Prasad S, Frans J M M. Improving crop salt tolerance: anion and cation transporters as genetic engineering targets[J]. Plant stress, 2009, 5(1): 64-70. |
[39] | Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. |
[40] | 伍国强, 冯瑞军, 魏金魁, 等. 过量表达霸王ZxNHX和ZxVP1-1基因增强甜菜对渗透胁迫的耐受性[J]. 植物生理学报, 2017, 53(6): 1007-1014. |
[1] | WANG Yingzi, LI Yinhua, CHEN Jinhua, LIU Zhonghua, HUANG Jian'an. Effects of Exogenous Nitric Oxide on Physiological Characteristics of Tea Plants Under Cold Stress [J]. Journal of Tea Science, 2019, 39(03): 335-341. |
[2] | GUO Lingling, ZHANG Fen, ZHANG Yazhen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsLHTs Gene Subfamily in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 280-288. |
[3] | LEI Lei, WANG Lu, YAO Lina, HAO Xinyuan, ZENG Jianming, DING Changqing, WANG Xinchao, YANG Yajun. Identification and Expression Analysis of Calcium-dependent Protein Kinase CsCDPK17 in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 267-279. |
[4] | LIU Guanhua, YANG Mei, FU Jianyu, . Cloning and Functional Analysis of CsLCYb and CsLCYe for Carotene Biosynthesis in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 257-266. |
[5] | WANG Junya, CHEN Wei, LIU Dingding, CHEN Liang, YAO Mingzhe, MA Chunlei. The Transcriptome Analysis of Different Tea Cultivars in Response to the Spring Cold Spells [J]. Journal of Tea Science, 2019, 39(02): 181-192. |
[6] | LIU Ying, HAO Xinyuan, ZHENG Mengxia, WANG Xinchao, XIAO Bin, YANG Yajun. Recent Advances on Tea Flowering Mechanisms [J]. Journal of Tea Science, 2019, 39(01): 1-10. |
[7] | LIU Ping, REN Qiujing, KANG Xin, ZHANG Yuanyuan, LIN Xiaorong, LI Bin, GAO Xiong, CHEN Zhongzheng. Isolation and Functional Analysis of Promoter for N-methyltransferase Gene Associated with Caffeine Biosynthesis in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(6): 569-579. |
[8] | PANG Dandan, ZHANG Fen, ZHANG Yazhen, WEI Kang, WANG Liyuan, CHENG Hao. Research Advance on Biosynthesis, Regulation and Function of Anthocyanins in Tea Plant [J]. Journal of Tea Science, 2018, 38(6): 606-614. |
[9] | XIANG Yi, LIU Shuoqian, GONG Zhihua, CHEN Dong, XIAO Wenjun. Differential Expression Analysis of Genes Related to Anthocyanin Biosynthesis in Purple Buds of Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(5): 439-449. |
[10] | LOU Weiping, XIAO Qiang, SUN Ke, DENG Shengrong, YANG Ming. Heat Stress Risk Regionalization of Tea Plant in Zhejiang Province [J]. Journal of Tea Science, 2018, 38(5): 480-486. |
[11] | WANG Feng, SHAN Ruiyang, CHEN Yuzhen, LIN Dongliang, ZANG Chunrong, CHEN Changsong, YOU Zhiming, YU Wenquan. A Case Study of Cadmium Distribution in Soil-Tea Plant-Tea Soup System in Central Fujian Province and Relative Health Risk Assessment [J]. Journal of Tea Science, 2018, 38(5): 537-546. |
[12] | WANG Feng, WU Zhidan, CHEN Yuzhen, JIANG Fuying, ZHU Liugang, ZHANG Wenjin, WENG Boqi, YOU Zhiming. Effects of the Combined Application of Biochar and Nitrogen on Growth and Nitrogen Use Efficiency of Tea Plants [J]. Journal of Tea Science, 2018, 38(4): 331-341. |
[13] | WEI Jipeng, LI Xin, WANG Zhaoyang, LI Yang, ZHANG Lan, SHEN Chen, YAN Peng, ZHANG Liping, HAN Wenyan. Effects of Exogenous Salicylic Acid on Photosynthesis and Antioxidant Enzymes of Tea Plants under High Temperature [J]. Journal of Tea Science, 2018, 38(4): 353-362. |
[14] | LIN Zhenghe, ZHONG Qiusheng, YOU Xiaomei, CHEN Zhihui, CHEN Changsong, SHAN Ruiyang, RUAN Qichun. Antioxidant Enzyme Activity of Tea Plant (Camellia sinensis) in Response to Low Temperature Stress [J]. Journal of Tea Science, 2018, 38(4): 363-371. |
[15] | ZENG Zeyuan, LUO Yong, ZHENG Chuchu, LI Juan, LI Qin, LIN Haiyan, WANG Kunbo. The Identification and Analysis of Polyphenol Oxidase Gene Family in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(4): 385-395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|