茶叶科学 ›› 2022, Vol. 42 ›› Issue (4): 447-462.doi: 10.13305/j.cnki.jts.2022.04.004
• 综述 • 下一篇
俞蓉欣1,2,3, 郑芹芹2,3, 陈红平2,3, 张劲松1,*, 张相春2,3,*
收稿日期:
2022-05-05
修回日期:
2022-06-07
出版日期:
2022-08-15
发布日期:
2022-08-23
通讯作者:
*zjs@ahau.edu.cn;zhangxc@tricaas.com
作者简介:
俞蓉欣,女,硕士研究生,主要从事茶功能性生物纳米材料研究。
基金资助:
YU Rongxin1,2,3, ZHENG Qinqin2,3, CHEN Hongping2,3, ZHANG Jinsong1,*, ZHANG Xiangchun2,3,*
Received:
2022-05-05
Revised:
2022-06-07
Online:
2022-08-15
Published:
2022-08-23
摘要: 儿茶素具有抗氧化、抗肿瘤、抗病毒、抗炎和免疫调节等功能,是茶叶中含量丰富的一类生物活性物质。由于酚羟基的高活泼性导致儿茶素在生物体外及体内极易失去活性,致使其在生物体内利用度不高。近年来,纳米生物技术的发展有望通过配体设计、精准合成和智能调控等策略解决儿茶素低生物利用度的难题,并拓展其在生命健康领域中的应用。综述了近几年儿茶素生物医用纳米材料的研究进展,重点阐述了儿茶素生物医用纳米材料的抗肿瘤、抗菌、抗炎、药物递送和抗病毒等活性,对儿茶素生物医用纳米材料的构建和生物作用机制进行了探讨,并对儿茶素新材料设计及其应用前景进行了展望。
中图分类号:
俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. doi: 10.13305/j.cnki.jts.2022.04.004.
YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun. Recent Advances in Catechin Biomedical Nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462. doi: 10.13305/j.cnki.jts.2022.04.004.
[1] Sakanaka S, Juneja L R, Taniguchi M.Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria[J]. Journal of Bioscience and Bioengineering, 2000, 90(1): 81-85. [2] Vazquez-Prieto M A, Bettaieb A, Haj F G, et al. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes[J]. Archives of Biochemistry and Biophysics, 2012, 527(2): 113-118. [3] Friedman M, Mackey B E, Kim H J, et al.Structure activity relationships of tea compounds against human cancer cells[J]. Journal of Agricultural and Food Chemistry, 2007, 55(2): 243-253. [4] Ahmed N A, Radwan N M, Aboul Ezz H S, et al. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats[J]. Electromagnetic Biology and Medicine, 2017, 36(1): 63-73. [5] Yang C S, Wang H, Sheridan Z P.Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea[J]. Journal of Food and Drug Analysis, 2018, 26(1): 1-13. [6] Sodagari H R, Bahramsoltani R, Farzaei M H, et al.Tea polyphenols as natural products for potential future management of HIV infection: an overview[J]. Journal of Natural Remedies, 2016, 16(2): 60-72. [7] Truong V L, Jeong W S.Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness, 2022, 11(3): 502-511. [8] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Biochemistry of tea [M]. 3rd ed. Beijing: China Agricultural Press, 2003. [9] Bansal S, Syan N, Mathur P, et al.Pharmacological profile of green tea and its polyphenols: a review[J]. Medicinal Chemistry Research, 2012, 21(11): 3347-3360. [10] Ohishi T, Goto S, Monira P, et al.Anti-inflammatory action of green tea[J]. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2016, 15(2): 74-90. [11] Anshu M R, Manjeshwar S B, Santosh K K.Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation[J]. Molecular Cancer Therapeutics, 2005, 4(1): 81-90. [12] Chyu K Y, Babbidge S M, Zhao X N, et al.Differential effects of green tea: derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice[J]. Circulation, 2004, 109(20): 2448-2453. [13] Lorenz M, Wessler S, Follmann E, et al.A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation[J]. Journal of Biological Chemistry, 2004, 279(7): 6190-6195. [14] Gordon N C, Wareham D W.Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of [15] 陈宗懋. 茶多酚类化合物抗癌的生物化学和分子生物学基础[J]. 茶叶科学, 2003, 23(2): 83-93. Chen Z M.Biochemical and molecular biological basis on the anticarcinogenic activity of tea polyphenolic compounds[J]. Journal of Tea Science, 2003, 23(2): 83-93. [16] Mereles D, Hunstein W.Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises?[J]. International Journal of Molecular Sciences, 2011, 12(9): 5592-5603. [17] Riehemann K, Schneider S W, Luger T A, et al.Nanomedicine: challenge and perspectives[J]. Angewandte Chemie International Edition, 2009, 48(5): 872-897. [18] Zhao F F, Shen G Z, Chen C J, et al.Nanoengineering of stimuli-responsive protein-based biomimetic protocells as versatile drug delivery tools[J]. Chemistry A European Journal, 2014, 20(23): 6880-6887. [19] Jain R K, Stylianopoulos T.Delivering nanomedicine to solid tumors[J]. Nature Reviews Clinical Oncology, 2010, 7(11): 653-664. [20] Pryshchepa O, Pomastowski P, Buszewski B.Silver nanoparticles: synthesis, investigation techniques, and properties[J]. Advances in Colloid and Interface Science, 2020, 284: 102246. doi:10.1016/j.cis.2020.102246. [21] Moritz M, Geszke-Moritz M.The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chemical Engineering Journal, 2013, 228: 596-613. [22] Zhang X C, Zhang Z C, Shu Q M, et al.Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo[J]. Advanced Functional Materials, 2021, 31(14): 2008720. doi: 10.1002/adfm.202008720. [23] Li W Q, Li W, Wan Y L, Wang L F, et al.Preparation, characterization and releasing property of antibacterial nano-capsules composed of epsilon-PL-EGCG and sodium alginate-chitosan[J]. International Journal of Biological Macromolecules, 2022, 204: 652-660. [24] Pace D R C C, Liu X L, Sun M, et al. Anticancer activities of -epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells[J]. Journal of Liposome Research, 2013, 23(3): 187-196. [25] Yin C Y, Cheng L, Zhang X, et al.Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols[J]. Journal of Food Biochemistry, 2020, 44(9): e13380. doi: 10.1111/jfbc.13380. [26] 刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13. Liu Z C, Li Z X, Zhang Y, et al.Interpretation on the report of Global Cancer Statistics 2020[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021, 7(2): 1-13. [27] 中新网. 中国恶性肿瘤5年生存率已提升至40.5%[J]. 现代医院, 2018, 18(6): 796. Xinhuanet. The 5-year survival rate of malignant tumors in China has increased to 40.5%[J]. Modern Hospitals, 2018, 18(6): 796. [28] Moseley V R, Morris J, Knackstedt R W, et al.Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells[J]. Anticancer Research, 2013, 33: 5325-5334. [29] Qiao Y Y, Cao J Y, Xie L Q, et al.Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells[J]. Archives of Pharmacal Research, 2009, 32(9): 1309-1315. [30] 祁洁, 徐颖磊, 梁文怡, 等. EGCG纳米载体制备技术及其对EGCG活性影响的研究进展[J]. 茶叶科学, 2017, 37(2): 119-129. Qi J, Xu Y L, Liang W Y, et al.Progress on the preparation technologies and the active improvement of EGCG nano-carriers[J]. Journal of Tea Science, 2017, 37(2): 119-129. [31] Lambert J D, Kennett M J, Sang S M, et al.Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice[J]. Food and Chemical Toxicology, 2010, 48(1): 409-416. [32] Wang X X, Yang L M, Wang J J, et al.A mouse model of subacute liver failure with ascites induced by step-wise increased doses of (-)-epigallocatechin-3-gallate[J]. Scientific Reports, 2019, 9(1): 18102. doi: 10.1038/s41598-019-54691-0. [33] Vallet-Regí M, Balas F, Arcos D.Mesoporous materials for drug delivery[J]. Angewandte Chemie International Edition, 2007, 46(40): 7548-7558. [34] Giljohann D A,Seferos D S,Daniel W L, et al.Gold nanoparticles for biology and medicine[J]. Angewandte Chemie International Edition, 2010, 49(19): 3280-3294. [35] Caminade A M, Majoral J P.Nanomaterials based on phosphorus dendrimers[J]. Accounts of Chemical Research, 2004, 37(6): 341-348. [36] Ding J, Liang T X Z, Min Q H, et al. "Stealth and fully-laden" drug carriers: self-assembled nanogels encapsulated with epigallocatechin gallate and siRNA for drug-resistant breast cancer therapy[J]. ACS Applied Materials and Interfaces, 2018, 10(12): 9938-9948. [37] Chung J E, Tan S, Gao S J, et al.Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy[J]. Nature Nanotechnology, 2014, 9(11): 907-912. [38] Madhulika S, Priyanka B, Sanjay M, et al.PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma[J]. International Journal of Nanomedicine, 2015, 10: 6789-6809. [39] Zhang H Y, Zeng Y, Zhe S, et al.Functional nanoparticles of tea polyphenols for doxorubicin delivery in cancer treatment[J]. Journal of Materials Chemistry B, 2017, 5(36): 7622-7631. [40] Cheng T J, Liu J J, Ren J, et al.Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance[J]. Theranostics, 2016, 6(9): 1277-1292. [41] Chen Z H, Wang C H, Chen J Z, et al.Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols[J]. Journal of the American Chemical Society, 2013, 135(11): 4179-4182. [42] Rahim M A, Björnmal M, Bertleff-Zieschang N, et al. Multiligand metal-phenolic assembly from green tea infusions[J]. ACS Applied Materials and Interfaces, 2018, 10(9): 7632-7639. [43] Zhong Q Z, Li S Y, Chen J Q, et al.Oxidation-mediated kinetic strategies for engineering metal-phenolic networks[J]. Angewandte Chemie International Edition, 2019, 58(36): 12563-12568. [44] Fang J Y, Lee W R, Shen S C, et al.Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas[J]. Journal of Dermatological Science, 2006, 42(2): 101-109. [45] Gülserenİ, Guri A, Corredig M. Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells[J]. Food Digestion, 2012, 3(1/3): 36-45. [46] Liang K, Chung J E, Gao S J, et al.Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol): green tea catechin conjugate for cancer therapy[J]. Advanced Materials, 2018, 30(14): e1706963. doi:10.1002/adma.201706963. [47] Hu B, Yu S J, Shi C, et al.Amyloid-Polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis[J]. ACS Nano, 2020, 14: 2760-2776. [48] Smith A, Giunta B, Bickford P C, et al.Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease[J]. International Journal of Pharmaceutics, 2010, 389(1/2): 207-212. [49] Gomes J F P S, Rocha S, Pereira M D C, et al. Lipid/particle assemblies based on maltodextrin-gum arabic core as bio-carriers[J]. Colloids and Surfaces B: Biointerfaces, 2010, 76(2): 449-455. [50] Bae K H, Tan S, Yamashita A, et al.Hyaluronic acid-green tea catechin micellar nanocomplexes: fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity[J]. Biomaterials, 2017, 148: 41-53. [51] Hsieh D S, Wang H, Tan S W, et al.The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles[J]. Biomaterials, 2011, 32(30): 7633-7640. [52] Li K, Xiao G, Richardson J J, et al.Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin[J]. Advanced Science, 2019, 6(5): 1801688. doi: 10.1002/advs.201801688. [53] Ren Z G, Sun S C, Sun R R, et al.A metal: polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy[J]. Advanced Materials, 2020, 32(6): e1906024. doi:10.1002/adma.201906024. [54] Yuan X M, He Y, Zhou G G, et al.Target challenging-cancer drug delivery to gastric cancer tissues with a fucose graft epigallocatechin-3-gallate-gold particles nanocomposite approach[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 147-153. [55] Dai Y L, Yang Z, Cheng S Y, et al.Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles[J]. Advanced Materials, 2018, 30(8): 1704877. doi: 10.1002/adma.201704877. [56] Zheng D W, Lei Q, Zhu J Y, et al.Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy[J]. Nano Letters, 2016, 17(1): 284-291. [57] Yi Z, Sun Z, Chen G C, et al.Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy[J]. Journal of Materials Chemistry B, 2018, 6(9): 1373-1386. [58] Wang D G, Wang T T, Yu H J, et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment [J]. Science Immunology, 2019, 4(37): eaau6584. doi: 10.1126/sciimmunol. [59] Siddiqui I A, Bharali D J, Nihal M, et al.Excellent anti-proliferative and pro-apoptotic effects of -epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo[J]. Nanomedicine Nanotechnology Biology and Medicine, 2014, 10(8): 1619-1626. [60] Mintzer M A, Dane E L, O'Toole G A, et al. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases[J]. Molecular Pharmaceutics, 2012, 9(3): 342-354. [61] 王迎军, 黄雪连, 陈军建, 等. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15. Wang Y J, Huang X L, Chen J J, et al.Bacterial infection-microenvironment responsive polymeric materials for the treatment of bacterial infectious diseases: a review[J]. Materials Reports, 2019, 33(1): 5-15. [62] Ning X H, Lee S, Wang Z R, et al.Maltodextrin-based imaging probes detect bacteria [63] Moore E H.Atypical mycobacterial infectionin the lung: CT appearance[J]. Thoracic Radiology, 1993, 187(3): 777-782. [64] Si W D, Gong J, Tsao R, et al.Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract[J]. Journal of Chromatography A, 2006, 1125(2): 204-210. [65] Ikigai H, Nakae T, Hara Y, et al.Bactericidal catechins damage the lipid bilayer[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1993, 1147(1): 132-136. [66] Moreno-Vásquez M J, Plascencia-Jatomea M, Sánchez-Valdes S, et al. Characterization of epigallocatechin-gallate-grafted chitosan nanoparticles and evaluation of their antibacterial and antioxidant potential[J]. Polymers, 2021, 13(9): 1375. doi: 10.3390/polym13091375. [67] Huang T W, Ho Y C, Tsai T N, et al.Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles[J]. Carbohydrate Polymers, 2020, 242: 116312. doi: 10.1016/j.carbpol.2020.116312. [68] Zhang H C, Jung T, Zhao Y Y, et al.Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded beta-chitosan nanoparticles of different particle sizes[J]. Carbohydrate Polymers, 2016, 137: 82-91. [69] Rónavári A, Kovács D, Lgaz N, et al.Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study[J]. International Journal of Nanomedicine, 2017, 12: 871-883. [70] Wu T L, Cui C Y, Fan C C, et al.Tea eggs-inspired high-strength natural polymer hydrogels[J]. Bioactive Materials, 2021, 6(9): 2820-2828. [71] Hu B, Shen Y, Adamcik J, et al.Polyphenol-binding amyloid fibrils self-assembleinto reversible hydrogels with antibacterial activity[J]. ACS Nano, 2018, 12(4): 3385-3396. [72] Yang C S, Ho C T, Zhang J S, et al.Antioxidants: differing meanings in food science and health science[J]. Journal of Agricultural and Food Chemistry, 2018, 66(12): 3063-3068. [73] Zuo J, Zhang Z, Luo M C, et al.Redox signaling at the crossroads of human health and disease[J]. MedComm, 2022, 3(2): e127. doi: 10.1002/mco2.127. [74] Sies H, Jones D P.Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nature Reviews Molecular Cell Biology, 2020, 21(7): 363-383. [75] Sekowski S, Terebka M, Veiko A, et al.Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin: theoretical and experimental studies[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356: 379-388. [76] Zhang B, Qin Y M, Yang L, et al.A polyphenol-network-mediated coating modulates inflammation and vascular healing on vascular stents[J]. ACS Nano, 2022, 16(4): 6585-6597. [77] Yang P, Zhang J H, Xiang S Y, et al.Green nanoparticle scavengers against oxidative stress[J]. ACS Applied Materials and Interfaces, 2021, 13(33): 39126-39134. [78] Shen W W, Wang Q W, Shen Y, et al.Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers[J]. ACS Central Science, 2018, 4(10): 1326-1333. [79] Fan Q Q, Yang Z, Li Y H, et al.Polycatechol mediated small interfering RNA delivery for the treatment of ulcerative colitis[J]. Advanced Functional Materials, 2021, 31(24): 2101646. doi: 10.1002/adfm.202101646. [80] Xu J, Wang J, Deng F, et al.Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus [81] Weber J M, Umunyana A R, Imbeault L, et al.Inhibition of adenovirus infection and adenain by green tea catechins[J]. Antiviral Research, 2003, 58(2): 167-173. [82] Zu M, Yang F, Zhou W L, et al.In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives[J]. Antiviral Research, 2012, 94(3): 217-224. [83] Bettuzzi S, Gabba L, Cataldo S.Efficacy of a po1ypheno1ic standardized green tea extract for the treatment of covid 19 syndrome a proof of princip1e study[J]. COVID, 2021, 1(1): 2-12. [84] Song J M, Lee K H, Seong B L.Antiviral efffect of catechins in green tea on influenza virus[J]. Antiviral Research, 2005, 68(2): 66-74. [85] 熊立瑰, 刘思慧, 黄建安, 等. 茶的抗病毒作用研究进展[J]. 茶叶科学, 2021, 41(2): 143-158. Xiong L G, Liu S H, Huang J A, et al.The antiviral properties of tea[J]. Journal of Tea Science, 2021, 41(2): 143-158. [86] Ge M Y, Xiao Y, Chen H J, et al.Multiple antiviral approaches of (-)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro[J]. Antiviral Research, 2018, 158: 52-62. [87] Williamson M, Mccormick T, Nance C, et al.Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy[J]. Journal of Allergy and Clinical Immunology, 2006, 118(6): 1369-1374. [88] Calland N, Albecka A, Belouzard S, et al.(-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry[J]. Hepatology, 2012, 55(3): 720-729. [89] Khaerunnisa S, Kurniawan H, Awaluddin R, et al.Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study[J]. Preprints, 2020: 2020030226. doi: 10.20944/preprints202003. 0226.v1. [90] Nguyen T T H, Woo H J, Kang H K, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in [91] Qamar M T, Alqahtani S M, Alamri M A, et al.Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants[J]. Journal of Pharmaceutical Analysis, 2020, 10(4): 313-319. [92] Mhater S, Srivastava T, Naik S, et al.Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review[J]. Phytomedicine, 2021, 85: 153286. doi: 10.1016/j.phymed.2020.153286. [93] Zhang Z C, Zhang X C, Bi K Y, et al.Potential protective mechanisms of green tea polyphenol EGCG against COVID-19[J]. Trends in Food Science and Technology, 2021, 114: 11-24. [94] Reshamwala D, Shroff S, Amamuddy O S, et al.Polyphenols epigallocatechin gallate and resveratrol, and polyphenol-functionalized nanoparticles prevent enterovirus infection through clustering and stabilization of the viruses[J]. Pharmaceutics, 2021, 13(8): 1182. doi: 10.3390/pharmaceutics13081182. [95] Zhu S, Li L L, Gu Z J, et al.15 years of small: research trends in nanosafety[J]. Small, 2020, 16(36): 2000980. doi: 10.1002/smll.202000980. [96] Zhang C Y, Gao L, Yuan Q, et al.Is GSH chelated Pt molecule inactive in anti-ancer treatment? A case study of Pt 6 GS 4[J]. Small, 2020, 16(26): 2002044. doi: 10.1002/smll.202002044. [97] Lin A, Liu Y N, Zhu X F, et al.Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition[J]. ACS Nano, 2019, 13(12): 13965-13984. [98] Malhotra N, Audira G, Castillo A L, et al.An update report on the biosafety and potential toxicity of fullerene-based nanomaterials toward aquatic animals[J]. Oxidative Medicine and Cellular Longevity, 2021: 7995223. doi: 10.1155/2021/7995223. [99] Zelepukin I V, Yaremenko A V, Ivanov I N, et al.Long-term fate of magnetic particles in mice: a comprehensive study[J]. ACS Nano, 2021, 15(7): 11341-11357. [100] Sun D X, Zhou S, Gao W.What went wrong with anticancer nanomedicine design and how to make it right[J]. ACS Nano, 2020, 14(10): 12281-12290. [101] Cai R, Chen C Y.The crown and the scepter: roles of the protein corona in nanomedicine[J]. Advanced Materials, 2019, 31(45): 1805740. doi: 10.1002/adma.201805740. [102] Hussain S, Joo J, Kang J, et al.Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy[J]. Nature Biomedical Engineering, 2018, 2: 95-103. [103] Qiao Y Q, Liu X M, Li B, et al.Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing[J]. Nature Communications, 2020, 11: 4446. doi: 10.1038/s41467-020-18268-0. [104] Liu Y, Shi L Q, Su L Z, et al.Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control[J]. Chemical Society Reviews, 2019, 48(2): 428-446. [105] Fan Y M, Lüchow M, Zhang Y N, et al.Nanogel encapsulated hydrogels as advanced wound dressings for the controlled delivery of antibiotics[J]. Advanced Functional Materials, 2021, 31(7): 2006453. doi: 10.1002/adfm.202006453. [106] Cheng X T, Xu H D, Ran H H, et al.Glutathione-depleting nanomedicines for synergistic cancer therapy[J]. ACS Nano, 2021, 15(5): 8039-8068. [107] Han S, Zal T, Sokolov K V.Fate of antibody-targeted ultrasmall gold nanoparticles in cancer cells after receptor-mediated uptake[J]. ACS Nano, 2021, 15(9): 9495-9508. [108] Zhe W, Duan Y, Duan Y W.Application of polydopamine in tumor targeted drug delivery system and its drug release behavior[J]. Journal of Controlled Release, 2018, 290: 56-74. [109] Zhang X C, He J, Qiao L.3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization[J]. Cell Proliferation, 2022: e13289. doi: 10.1111/cpr.13289. |
[1] | 陈珂, 王苑竹, 杨晓颖, 张冬英, 朱强强. 壳聚糖复合β-乳球蛋白负载EGCG纳米粒的制备及其对糖尿病小鼠血糖的影响[J]. 茶叶科学, 2022, 42(5): 731-739. |
[2] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[3] | 张旖旎, 吉铮. 表没食子儿茶素没食子酸酯(EGCG)研究的文献计量分析[J]. 茶叶科学, 2022, 42(3): 423-434. |
[4] | 刘亚军, 王培强, 蒋晓岚, 庄菊花, 高丽萍, 夏涛. 茶树单体和聚合态儿茶素生物合成的研究进展[J]. 茶叶科学, 2022, 42(1): 1-17. |
[5] | 马冰凇, 王佳菜, 徐成成, 任小盈, 马存强, 周斌星. 不同仓储期普洱茶(生茶)中酚类成分差异及其对体外抗氧化能力的影响[J]. 茶叶科学, 2022, 42(1): 51-62. |
[6] | 吴文亮, 童彤, 胡瑶, 周浩, 银霞, 张曙光. 可可茶及其优势化学成分的健康功效研究进展[J]. 茶叶科学, 2021, 41(5): 593-607. |
[7] | 陈春晓, 楼文雨, 丁镇建, 李卓烨, 杨媛媛, 金鹏, 杜琪珍. 伐地那非增加EGCG-β-乳球蛋白纳米粒对肝癌细胞的抑制作用[J]. 茶叶科学, 2020, 40(4): 528-535. |
[8] | 徐燕, 蔡吓强, 解千金, 邰玲玲, 刘增辉. 表没食子儿茶素没食子酸酯和维生素C联用对高尿酸血症小鼠血尿酸水平的影响[J]. 茶叶科学, 2020, 40(3): 407-414. |
[9] | 张建勇, 陈琳, 崔宏春, 王伟伟, 薛金金, 熊春华, 江和源. PBD和RSM联用优化聚酯型儿茶素A化学合成技术参数[J]. 茶叶科学, 2020, 40(1): 51-62. |
[10] | 颜俊杰, 陈方政, 陈罗薇, 王恒, 黄静雯, 金陆飞, 徐于惠, 袁琳波. (+)-儿茶素缓解大鼠低氧性肺动脉高压的作用和机制[J]. 茶叶科学, 2019, 39(1): 55-62. |
[11] | 方洪枫, 张慧霞, 王国红, 杨民和. 混菌发酵绿茶产脂肪酶及其对酯型儿茶素的水解作用分析[J]. 茶叶科学, 2019, 39(1): 88-97. |
[12] | 涂政, 梅慧玲, 李欢, 刘馨秋, Emmanuel Arkorful, 张彩丽, 陈暄, 孙康, 黎星辉. 冠突散囊菌和植物乳杆菌联合发酵对绿茶液态饮料品质的影响[J]. 茶叶科学, 2018, 38(5): 496-507. |
[13] | 冉伟, 张瑾, 张新, 蔺松波, 孙晓玲. 茶尺蠖幼虫取食提高茶树儿茶素代谢响应强度[J]. 茶叶科学, 2018, 38(2): 133-139. |
[14] | 张玥, 胡雲飞, 王树茂, 柯子星, 林金科. 茶树儿茶素合成相关MYB转录因子生物信息学分析[J]. 茶叶科学, 2018, 38(2): 162-173. |
[15] | 孙丽丽, 曾祥泉, NileshWGaikwad, 王欢, 须海荣, 叶俭慧. 绿茶儿茶素类生物标记物的检测及应用[J]. 茶叶科学, 2017, 37(5): 429-441. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|