[1] 余锋, 贾芳芳. 饮食干预肠道微生物调控认知和神经退行性疾病的作用机制[J]. 中国食品学报, 2022, 22(6): 403-413. Yu F, Jia F F.Mechanism of dietary intervention gut microbiota in regulating cognition and neurodegenerative diseases[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 403-413. [2] 曹雨欣, 张彦青, 戚务勤, 等. 食源性天然产物调控线粒体自噬预防神经退行性疾病的研究进展[J]. 食品科学, 2024, 45(1): 301-312. Cao Y X, Zhang Y Q, Qi W Q, et al.Food-derived natural products prevent neurodegenerative diseases by regulating mitophagy: a review of research progress[J]. Food Science, 2024, 45(1): 301-312. [3] Chao A C, Chen C H, Wu M H, et al.Roles of Id1/HIF-1 and CDK5/HIF-1 in cell cycle reentry induced by amyloid-beta peptide in post-mitotic cortical neuron[J]. Biochimica et Biophysica Acta, 2020, 1867(4): 118628. doi: 10.1016/j.bbamcr.2019.118628. [4] Hidalgo F J, Delgado R M, Zamora R.Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls[J]. Food Chemistry, 2017, 229: 388-395. [5] Pan H B, Gao Y, Tu Y Y.Mechanisms of body weight reduction by black tea polyphenols[J]. Molecules, 2016, 21(12): 1659. doi: 10.3390/molecules21121659. [6] Schimidt H L, Garcia A, Martins A, et al.Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model[J]. Food Research International, 2017, 100(Part1): 442-448. [7] Deb S, Dutta A, Phukan B C, et al.Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson's disease therapeutics[J]. Neurochemistry International, 2019, 129: 104478. doi: 10.1016/j.neuint.2019.104478. [8] Zhao T T, Li C, Wang S, et al.Green tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology[J]. Molecules, 2022, 27(12): 3909. doi: 10.3390/molecules27123909. [9] 李玥, 王屹豪, 张静聿, 等. 茶叶功能成分治疗阿尔茨海默病分子作用机制的研究进展[J]. 中国当代医药, 2023, 30(31): 19-23. Li Y, Wang Y H, Zhang J Y, et al.Research progress on the molecular mechanism of functional components of tea in the treatment of Alzheimer's disease[J]. China Modern Medicine, 2023, 30(31): 19-23. [10] Cai S X, Yang H, Wen B B, et al.Inhibition by microbial metabolites of Chinese dark tea of age-related neurodegenerative disorders in senescence-accelerated mouse prone 8 (SAMP8) mice[J]. Food & Function, 2018, 9(10): 5455-5462. [11] Pan W J, Li W S, Wu H, et al.Aging-accelerated mouse prone 8 (SAMP8) mice experiment and network pharmacological analysis of aged Liupao tea aqueous extract in delaying the decline changes of the body[J]. Antioxidants, 2023, 12(3): 685. doi: 10.3390/antiox12030685. [12] Wan J, Feng M Y, Pan W J, et al.Inhibitory effects of six types of tea on aging and high-fat diet-related amyloid formation activities[J]. Antioxidants, 2021, 10(10): 1513. doi: 10.3390/antiox10101513. [13] Li B Y, Mao Q Q, Xiong R G, et al.Preventive effects of different black and dark teas on obesity and non-alcoholic fatty liver disease and modulate gut microbiota in high-fat diet fed mice[J]. Foods, 2022, 11(21): 3457. doi: 10.3390/foods11213457. [14] Song Y X, Li P, Liu L, et al.Nanostructural differentiation and toxicity of amyloid-β25-35 aggregates ensue from distinct secondary conformation[J]. Scientific Reports, 2018, 8(1): 765. doi: 10.1038/s41598-017-19106-y. [15] Tikhonova L A, Kaminsky Y G, Reddy V P, et al.Impact of amyloid β25-35 on membrane stability, energy metabolism, and antioxidant enzymes in erythrocytes[J]. American Journal of Alzheimer's Disease and Other Dementias, 2014, 29(8): 685-695. [16] Couly S, Denus M, Bouchet M, et al.Anti-amnesic and neuroprotective effects of fluoroethylnormemantine in a pharmacological mouse model of Alzheimer's disease[J]. The International Journal of Neuropsychopharmacology, 2021, 24(2): 142-157. [17] Pang Q Q, Kim J H, Choi J M, et al.Cirsium japonicum var. Maackii improves cognitive impairment under amyloid β25-35-induced Alzheimer's disease model[J]. BioMed Research International, 2022: 4513998. doi: 10.1155/2022/4513998. [18] Zhang Y Y, Bao H L, Dong L X, et al.Silenced lncRNA H19 and up-regulated microRNA-129 accelerates viability and restrains apoptosis of PC12 cells induced by Aβ25-35 in a cellular model of Alzheimer's disease[J]. Cell Cycle, 2021, 20(1): 112-125. [19] 郑新. 茶黄素延缓细胞衰老效应研究[D]. 长沙: 湖南农业大学, 2021. Zheng X.Study on the effect of theaflavins in delaying cell senescence[D]. Changsha: Hunan Agricultural University, 2021. [20] Crouch P J, Harding S M, White A R, et al.Mechanisms of Aβ mediated neurodegeneration in Alzheimer's disease[J]. The International Journal of Biochemistry & Cell Biology, 2008, 40(2): 181-198. [21] Strope T A, Birky C J, Wilkins H M.The role of bioenergetics in neurodegeneration[J]. International Journal of Molecular Sciences, 2022, 23(16): 9212. doi: 10.3390/ijms23169212. [22] Fan X L, Huang T T, Tong Y D, et al.p62 works as a hub modulation in the ageing process[J]. Ageing Research Reviews, 2022, 73: 101538. doi: 10.1016/j.arr.2021.101538. [23] Tóbon-Velasco J C, Cuevas E, Torres-Ramos M A. Receptor for AGEs (RAGE) as mediator of NF-κB pathway activation in neuroinflammation and oxidative stress[J]. CNS & Neurological Disorders Drug Targets, 2014, 13(9): 1615-1626. |