[1] |
董青华, 孙威江, 杨贤强. 茶树吸收氟的根际效应及富集机理研究进展[J]. 亚热带农业研究, 2009, 5(3): 162-166.
|
[2] |
阮建云, 杨亚军, 马立锋. 茶叶氟研究进展:累积特性、含量及安全性评价[J]. 茶叶科学, 2007, 27(1): 1-7.
|
[3] |
Koblar A, Tavčar G, Ponikvar-Svet M.Fluoride in teas of different types and forms and the exposure of humans to fluoride with tea and diet[J]. Food Chemistry, 2012, 130(2): 286-290.
|
[4] |
张云桂, 张昊, 朱雯. 砖茶氟的防龋功效及其应用[J]. 茶叶通讯, 2010, 37(4): 7-8.
|
[5] |
Borah K K, Bhuyan B, Sarma H P.Lead, arsenic, fluoride, and iron contamination of drinking water in the tea garden belt of Darrang district, Assam, India[J]. Environmental Monitoring and Assessment, 2010, 169: 347-352.
|
[6] |
Suyama E, Tamura T, Ozawa T, et al.Remineralization and acid resistance of enamel lesions after chewing gum containing fluoride extracted from green tea[J]. Australian Dental Journal, 2011, 56(4): 394-400.
|
[7] |
Fan Z P, Gao Y H, Wang W, et al.Prevalence of brick tea-type fluorosis in the tibet autonomous region[J]. Journal of Epidemiology, 2016, 26(2): 57-63.
|
[8] |
李曼. 氟骨症相关因素研究进展[J]. 西藏医药, 2016, 37(2): 87-88.
|
[9] |
赵平花. 茶叶氟含量的研究及对人体健康的影响分析[J]. 福建茶叶, 2016(2): 28-29.
|
[10] |
World Health Organization.Guidelines for drinking water quality incorporating first addendum. Third edition [M]. Geneva: WHO Press, 2004: 375-377.
|
[11] |
中华人民共和国农业部. NY 659—2003 茶叶中铬、镐、汞、砷及氟化物限量[S]. 2003: 2-3.
|
[12] |
李丽霞, 杜晓, 何春雷. 水培茶苗对氟的吸收累积特性[J]. 四川农业大学学报, 2008, 26(1): 59-63.
|
[13] |
沙济琴, 郑达贤. 福建茶树鲜叶含氟量的研究[J]. 茶叶科学, 1994, 14(1): 37-42.
|
[14] |
李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011: 87-90.
|
[15] |
房峰祥. 氟在茶树叶片中的形态、分布及富集机制[D]. 武汉: 华中农业大学, 2014: 16-19.
|
[16] |
朱晓静, 房峰祥, 张月华, 等. 茶叶及茶多糖中氟测定前处理方法的比较研究[J]. 茶叶科学, 2015, 35(2): 145-150.
|
[17] |
Yang X, Yu Z, Zhang B B, et al.Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves[J]. Scientia Horticulture, 2015, 184: 78-84.
|
[18] |
王丽霞. 茶树对氟的富集及其生理响应机制研究[D]. 咸阳: 西北农林科技大学, 2014: 16-22.
|
[19] |
吴海, 周安佩, 刘东玉, 等. 滇杨落叶期侧芽内源激素含量与分枝特性的关系[J]. 西南林业大学学报, 2013, 33(2): 35-41.
|
[20] |
马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012: 28-29.
|
[21] |
Li C L, Zheng Y, Zhou J R, et al.Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine[J]. Biologia Plantarum, 2011, 55(3): 563-566.
|
[22] |
钟秋生, 林郑和, 陈常颂, 等. 不同浓度氟对茶树幼苗叶片叶绿素荧光特性的影响[J]. 热带亚热带植物学报, 2014, 22(6): 576-583.
|
[23] |
Cai H M, Dong Y Y, Li Y Y, et al.Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves[J]. Acta Physiologiae Plantarum, 2016, 38(6): 144.
|
[24] |
李春雷, 倪德江. 氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J]. 江苏农业学报, 2015, 31(5): 1149-1153.
|
[25] |
高绪评, 王萍, 王之让, 等. 环境氟迁移与茶叶氟富集的关系[J]. 植物资源与环境, 1997, 6(2): 44-48.
|
[26] |
Zhang L, Li Q, Ma L F, et al.Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)[J]. Plant and Soil, 2013, 366: 659-669.
|
[27] |
张磊. 茶树氟吸收动力学特性的研究[D]. 北京: 中国农业科学院, 2008: 35-40.
|
[28] |
Zhang X C, Gao H J, Zhang Z Z, et al.Influences of different ion channel inhibitors on the absorption of fluoride in tea plants (Camellia sinesis L.)[J]. Plant Growth Regulation, 2013, 69(1): 99-106.
|
[29] |
小西茂毅. 铝对茶树生长的促进作用[J]. 茶叶, 1995, 21(3): 18-22.
|
[30] |
Morita A, Horie H, Fujii Y.Chemical forms of aluninum in xylem sap of tea plants (Camellia sinensis L. )[J]. Phytochemistry, 2004, 65(20): 2775-2780.
|
[31] |
Nagata T, Hayatsu M, Kosuge N.Aluminium kinetics in the tea plant using 27A1 and 19F NMR[J]. Phytochemistry, 1993, 32(4): 771-775.
|
[32] |
Liang J Y, Shyu T H, Lin H C.The aluminum complexesin in the xylem sap of tea plant[J]. Journal of the Chinese Agricultural Chemical Society, 1996, 34(6): 695-702.
|
[33] |
刘清泉, 陈亚华, 沈振国, 等. 细胞壁在植物重金属耐性中的作用[J]. 植物生理学报, 2014, 50(5): 605-611.
|
[34] |
Allan D, Jarrell W.Proton and copper adsorption to maize and soybean root cell walls[J]. Plant Physiol, 1989, 89(3): 823-832.
|
[35] |
徐劼, 保积庆, 于明革, 等. 茶树根细胞壁对铅的吸附作用[J]. 应用生态学报, 2014, 25(2): 427-432.
|
[36] |
刘婷婷, 彭程, 王梦, 等. 海州香薷根细胞壁对铜的吸附固定机制研究[J]. 环境科学学报, 2014, 34(2): 514-523.
|
[37] |
Memon A R, Schröder P.Implications of metal accumulation mechanisms to phytoremediation[J]. Environmental Science and Pollution Research, 2009, 16(2): 162-175.
|
[38] |
裴惠娟, 张满效, 安黎哲. 非生物胁迫下植物细胞壁组分变化[J]. 生态学杂志, 2011, 30(6): 1279-1286.
|
[39] |
潘秀, 石福臣, 刘立民, 等. Cd、Zn及其交互作用对互花米草中重金属的积累、亚细胞分布及化学形态的影响[J]. 植物研究, 2012, 32(6): 717-723.
|
[40] |
侯明, 胡存杰, 熊玲, 等. 钒在枸杞幼苗中积累、转运及亚细胞分布[J]. 农业环境科学学报, 2013, 32(8): 1514-1519.
|
[41] |
廖祥儒, 陈彤, 刘小丽. 植物液泡的形成及其功能[J]. 细胞生物学杂志, 2002, 24(2): 95-101.
|
[42] |
苏有健, 廖万有, 王烨军, 等. 皖南茶园土壤活性铝形态分布与土壤pH和植茶年限的关系[J]. 农业环境科学学报, 2013, 34(4): 721-728.
|
[43] |
殷佳丽, 郑子成, 李廷轩. 不同植茶年限土壤团聚体全铝和交换态铝的分布特征[J]. 农业环境科学学报, 2015, 34(5): 891-896.
|
[44] |
Ruan J Y, Ma L F, Shi Y Z, et al.Uptake of fluoride by tea plant (Camellia sinensis L. ) and the impact of aluminium[J]. Journal of the Science of Food and Agriculture, 2003, 83(13): 1342-1348.
|
[45] |
卢莉, 张琪芬. 氟铝及其交互处理对茶苗生长的影响[J]. 现代农业科技, 2013(19): 19-21.
|
[46] |
向勤锃, 刘德华, 张丽霞, 等. 氟铝胁迫下茶树组培小苗的生长及其蛋白质分析[J]. 湖南农业大学学报: 自然科学版, 2005, 31(1): 57-59.
|
[47] |
Yang Y, Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant and Soil, 2016, 402: 179-190.
|
[48] |
彭传燚. 茶树氟富集规律、亚细胞分布及在叶片表面存在形态的研究[D]. 合肥: 安徽农业大学, 2013: 34-39.
|
[49] |
Ruan J Y, Ma L F, Shi Y Z, et al.The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.)[J]. Annals of Botany, 2004, 93(1): 97-105.
|
[50] |
Zhang X C, Gao H J, Yang T Y, et al.Al3+-promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS[J]. Journal of the Science of Food and Agriculture, 2016, 96(12): 4224-4230.
|
[51] |
Jenny L B, Narasimhan Sudarsan, Zasha Weinberg, et al.Widespread genetic switches and toxicity resistance proteins for fluoride[J]. Science, 2012, 335(13): 233-236.
|
[52] |
Stockbridge R B, Lim H H, Otten R, et al.Fluoride resistance and transport by riboswitch-controlled CLC antiporters[J]. Proceedings of the National Academy of Sciences, 2012, 109(38): 15289-15294.
|
[53] |
Stockbridge R B, Robertson J L, Kolmakova-Partensky L, et al.A family of fluoride-specific ion channels with dual-topology architecture[J]. Elife, 2013, 10(2): e01084.
|
[54] |
Li S S, Smith K D, Davis J H, et al.Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins[J]. Proceedings of the National Academy of Sciences, 2013, 110(47): 19018-19023.
|
[55] |
Smith K D, Gordon P B, Rivetta A, et al.Yeast fex1p is a constitutively expressed fluoride channel with functional asymmetry of its two homologous domains[J]. Journal of Biological Chemistry, 2015, 290(32): 19874-19887.
|
[56] |
Liao Y, Chen J W, Brandt B W, et al.Identification and functional analysis of genome mutations in a fluoride-resistant streptococcus mutans strain[J]. Plos One, 2015, 10(4): e122630.
|
[57] |
Zhu L K, Zhang Z M, Liang J P.Fatty-acid profiles and expression of the fabM gene in a fluoride-resistant strain of Streptococcus mutans[J]. Archives of Oral Biology, 2012, 57(1): 10-14.
|