






			
			
	茶叶科学 ›› 2020, Vol. 40 ›› Issue (3): 328-340.doi: 10.13305/j.cnki.jts.2020.03.004
蒋君梅1, 方远鹏1, 宁娜1, 陈美晴1, 杨再福1, 王勇1, 李向阳2,*, 谢鑫1,*
收稿日期:2019-08-30
									
				
											修回日期:2020-01-07
									
				
									
				
											出版日期:2020-06-15
									
				
											发布日期:2020-06-09
									
			通讯作者:
					*xyli1@gzu.edu.cn;xiexin2097757@163.com
												作者简介:蒋君梅,女,主要从事茶树抗病基因功能方面的研究,jjmguangan@163.com。
				
							基金资助:JIANG Junmei1, FANG Yuanpeng1, NING Na1, CHEN Meiqing1, YANG Zaifu1, WANG Yong1, LI Xiangyang2,*, XIE Xin1,*
Received:2019-08-30
									
				
											Revised:2020-01-07
									
				
									
				
											Online:2020-06-15
									
				
											Published:2020-06-09
									
			摘要: sHSPs基因家族可编码一类小分子的热激蛋白,广泛分布于植物中,具有分子伴侣的功能,在植物抵抗逆境胁迫中起着重要作用。通过基因克隆的方法,获得1个茶树CssHSP18.1基因的开放阅读框(Open reading frame,ORF),其全长480 bp,编码159个氨基酸。生物信息学分析表明,CssHSP18.1蛋白含有1个典型HSP20结构域,相对分子质量约为18.25 kDa,等电点为5.68,偏酸性,与栎和苹果亲缘关系最近,无信号肽与跨膜结构。RT-qPCR分析表明,CssHSP18.1在甘露醇(D-Mannitol)处理下表达量低于对照组;γ-氨基丁酸(GABA)能促进该基因的表达,在处理后1 h时表达量达到峰值;吲哚乙酸(IAA)和聚乙二醇(PEG 6000)处理后,CssHSP18.1在0.5 h时表达量最高,即GABA、IAA、PEG 6000均可诱导CssHSP18.1的表达。为获得CssHSP18.1可溶性蛋白,构建了pET-28a-CssHSP18.1重组质粒进行原核表达,并分别对表达菌株、诱导温度以及IPTG(异丙基- -D-硫代吡喃半乳糖苷)诱导浓度进行优化。结果显示,CssHSP18.1蛋白最佳表达菌株为BL21(DE3),最佳诱导温度和IPTG浓度分别为30℃和1.2 mmol·L-1。最后,采用Western blot对表达的CssHSP18.1蛋白进行验证。本研究为进一步揭示CssHSP18.1基因的生物学功能提供依据。
中图分类号:
蒋君梅, 方远鹏, 宁娜, 陈美晴, 杨再福, 王勇, 李向阳, 谢鑫. 茶树CssHSP18.1基因克隆及表达分析[J]. 茶叶科学, 2020, 40(3): 328-340. doi: 10.13305/j.cnki.jts.2020.03.004.
JIANG Junmei, FANG Yuanpeng, NING Na, CHEN Meiqing, YANG Zaifu, WANG Yong, LI Xiangyang, XIE Xin. Cloning and Expression Analysis of CssHSP18.1 Gene in Camellia Sinensis[J]. Journal of Tea Science, 2020, 40(3): 328-340. doi: 10.13305/j.cnki.jts.2020.03.004.
| [1] | 蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析[J]. 植物遗传资源学报, 2018, 19(5): 967-978. | 
| Jiang H B, Xia L F, Tian Y P, et al.Transcriptome analysis of anthocyanin synthesis related genes in purple bud tea plant[J]. Journal of Plant Genetic Resources, 2018, 19(5): 967-978. | |
| [2] | Yue C, Cao H L, Lin H Z, et al.Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments[J]. Planta, 2019, 250(1): 281-298. | 
| [3] | 贾焱, 孙英杰, 何聪芬, 等. 分子内分子伴侣机制的研究进展[J]. 生物化学与生物物理进展, 2016, 43(5): 443-448. | 
| Jia Y, Sun Y J, He C F, et al.Research progress on the mechanism of intramolecular chaperone[J]. Progress in Biochemistry and Biophysics, 2016, 43(5): 443-448. | |
| [4] | 陈建南. 分子伴侣参与调控动、植物的发育和进化进程[J]. 遗传, 2010, 32(5): 443-447. | 
| Chen J N.Progress in molecular chaperones participating in regulations of plant and animal development and evolution[J]. Hereditas, 2010, 32(5): 443-447. | |
| [5] | 王佳丽. 辅助分子伴侣SlBAG蛋白在番茄抗病反应中的功能研究[D]. 杭州: 浙江大学, 2019. | 
| Wang J L.Functional analysis of the auxiliary molecular chaperone BAG proteins in disease resistance in tomato [D]. Hangzhou: Zhejiang University, 2019. | |
| [6] | 谷丰. 高温噬菌体TSP4分子伴侣CPN47对酶热稳定性的影响研究[D]. 昆明: 昆明理工大学, 2014. | 
| Gu F.Effect of chaperone CPN47 fromThermusphage TSP4 on the thermal stability of enzyme [D]. Kunming: Kunming University of Science and Technology, 2014. | |
| [7] | 陈成, 董爱武, 苏伟. 拟南芥组蛋白分子伴侣AtHIRA参与体细胞同源重组及盐胁迫响应[J]. 植物学报, 2018, 53(1): 42-50. | 
| Chen C, Dong A W, Su W.Histone chaperone AtHIRA is involved in somatic homologous recombination and salinity response inArabidopsis[J]. Chinese Bulletin of Botany, 2018, 53(1): 42-50. | |
| [8] | 万丽丽, 王转茸, 辛强, 等.BnA7HSP70分子伴侣结合蛋白超表达能够提高甘蓝型油菜耐旱性[J]. 作物学报, 2018, 44(4): 483-492. | 
| Wan L L, Wang Z R, Xin Q, et al.Enhanced accumulation ofBnA7HSP70molecular chaperone binding protein improves tolerance to drought stress in transgenicBrassica napus[J]. Acta Agronomica Sinica, 2018, 44(4): 483-492. | |
| [9] | 张美惠. 高温胁迫下小麦白粉病菌HSP基因表达研究及HIGS体系的建立[D]. 北京: 中国农业科学院, 2019. | 
| Zhang M H.HSPgenes experssion level ofBlumeria graminisf. sp.triticiunder heat stress and host-induced gene silencing (HIGS) system establishment [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
| [10] | 李广隆, 刘思言, 鲁中爽, 等. 植物热激蛋白响应非生物胁迫研究进展[J]. 广东农业科学, 2019, 46(3): 24-30. | 
| Li G L, Liu S Y, Lu Z S, et al.Research progress of plant heat shock protein response to abiotic stress[J]. Guangdong Agricultural Sciences, 2019, 46(3): 24-30. | |
| [11] | Zhang K M, Ezemaduka A N. Wang Z, et al.A novel mechanism for small heat shock proteins to function as molecular chaperones[J]. Scientific Reports, 2015, 5: 8811. doi: 10.1038/srep08811. | 
| [12] | Khan A, Ali M, Khattak A M, et al.Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses[J]. International Journal of Molecular Sciences, 2019, 20(21): 5321. doi: 10.3390/ijms20215321. | 
| [13] | 栗振义, 龙瑞才, 张铁军, 等. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32(2): 7-13. | 
| Li Z Y, Long R C, Zhang T J, et al.Research progress on plant heat shock protein[J]. Biotechnology Bulletin, 2016, 32(2): 7-13. | |
| [14] | 张宁, 姜晶. 植物中小分子热激蛋白基因家族(sHSPs)研究进展[J]. 植物生理学报, 2017, 53(6): 943-948. | 
| Zhang N, Jiang J.Research advances of small heat shock protein gene family (sHSPs) in plants[J]. Plant Physiology Journal, 2017, 53(6): 943-948. | |
| [15] | Lin Q, Xie Y J, Guan W Q, et al.Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage[J]. Food Chemistry, 2019, 297: 124991. doi: 10.1016/j.foodchem.2019.124991. | 
| [16] | Peffer S, Gonçalves D, Morano K.Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast[J]. Journal of Biological Chemistry, 2019, 294(32): 12191-12202. | 
| [17] | 张莉. 小热休克蛋白26(sHSP26)在高温胁迫下保护玉米叶绿体的作用机制[D]. 郑州: 河南农业大学, 2012. | 
| Zhang L.The mechanism of small heat shock 26 (sHSP26) protecting maize chloroplast from heat stress [D]. Zhengzhou: Henan Agricultural University, 2012. | |
| [18] | 陈新海. 高温胁迫下水稻热激蛋白的作用机理研究[D]. 福州: 福建农林大学, 2011. | 
| Chen X H.Studies on heat shock proteins (HSPs) of rice (Oryza sativaL.) in response to heat stress [D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. | |
| [19] | Wu D, Vonk J J, Salles F, et al.The N terminus of the small heat shock protein HSPB7 drives its polyQ aggregation-suppressing activity[J]. Journal of Biological Chemistry, 2019, 294(25): 9985-9994. | 
| [20] | 俞佳虹. 番茄小热激蛋白SlHSP20基因家族的全基因组鉴定及表达分析[D]. 金华: 浙江师范大学, 2017. | 
| Yu J H.Genome-wide identification and expression profiling of theSlHSP20gene family in tomato [D]. Jinhua: Zhejiang Normal University, 2017. | |
| [21] | 梁潘霞, 黄杏, 李杨瑞. 甘蔗小分子量热激蛋白(sHSP)基因克隆及水分胁迫下的表达分析[J]. 生物技术通报, 2016, 32(10): 163-169. | 
| Liang P X, Huang X, Li Y R.Cloning of small heat-shock protein (HSP) gene from sugarcane and analysis of its expression under drought stress[J]. Biotechnology Bulletin, 2016, 32(10): 163-169. | |
| [22] | 张帅扬. 马铃薯小分子热激蛋白基因表达载体构建及胁迫诱导表达特性分析[D]. 长沙: 湖南农业大学, 2017. | 
| Zhang S Y.Construction of a plant experessing vector of small heat shock protein gene fromSolanum tuberosumand stress-induced experssion analysis [D]. Changsha: Hunan Agricultural University, 2017. | |
| [23] | 孙宇栋. 核桃sHSP家族基因筛选、响应模式及JrsHSP17.3基因的抗逆功能分析[D]. 杨凌: 西北农林科技大学, 2016. | 
| Sun Y D.WalnutsHSPfamily genetic screening, response pattern and resilience function analysis of geneJrsHSP17.3[D]. Yangling: Northwest A&F University, 2016. | |
| [24] | 李静婷, 赵旭耀, 刘超凡, 等. 热胁迫对转TasHSP16.9拟南芥幼苗生长生理特性的影响[J]. 江苏农业科学, 2016, 44(10): 113-116. | 
| Li J T, Zhao X Y, Liu C F, et al.Effects of heat stress on growth physiology of transgenosisTasHSP16.9Arabidopsis seedlings[J]. Jiangsu Agricultural Sciences, 2016, 44(10): 113-116. | |
| [25] | 刘珊珊. 西瓜中与CGMMV结构蛋白互作因子的筛选及sHSP功能分析[D]. 北京: 中国农业科学院, 2019. | 
| Liu S S.Identifying factors interacted with CGMMV sturctual proteins and functional analysis of sHSP in wastermelon [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
| [26] | 潘佳佳. 百合小热激蛋白的克隆及初步分析[D]. 兰州: 兰州大学, 2010. | 
| Pan J J.The identification of lily small heat shock protein gene and its preliminary research [D]. Lanzhou: Lanzhou University, 2010. | |
| [27] | 陈江飞, 高童, 万思卿, 等. 茶树小分子热激蛋白基因CsHSP22.4、CsHSP27.4、CsHSP17.5和CsHSP25.2的克隆与表达分析[J]. 园艺学报, 2018, 45(6): 1160-1172. | 
| Chen J F, Gao T, Wan S Q, et al.Cloning and expression analysis of small heat shock protein genesCsHSP22.4,CsHSP27.4,CsHSP17.5andCsHSP25.2inCamellia sinensis[J]. Acta Horticulturae Sinica, 2018, 45(6): 1160-1172. | |
| [28] | Chen Y J, Yu P, Luo J C, et al.Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT[J]. Mammalian genome, 2003, 14(12): 859-865. | 
| [29] | Hao X Y, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative Real-Time PCR analysis in tea plant (Camellia sinensis(L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. | 
| [30] | Chen X H, Lin S K, Liu Q L, et al.Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014, 1844(4): 818-828. | 
| [31] | Adão R, Zanphorlin L M, Lima T B, et al.Revealing the interaction mode of the highly flexibleSorghum bicolorHsp70/Hsp90 organizing protein (Hop): A conserved carboxylate clamp confers high affinity binding to Hsp90[J]. Journal of Proteomics, 2019, 191: 191-201. | 
| [32] | Zhou Y L, Chen H H, Chu P, et al.NnHSP17.5, a cytosolic class Ⅱ small heat shock protein gene fromNelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenicArabidopsis[J]. Plant Cell Reports, 2012, 31(2): 379-389. | 
| [33] | 李敏, 蒋昌华, 胡永红, 等. 月季Rchsp17.8基因转化烟草的非生物胁迫耐性研究[J]. 园艺学报, 2009, 36(8): 1191-1196. | 
| Li M, Jiang C H, Hu Y H, et al.Transformation of tobacco withRcHSP17.8from Chinese rose enhances tolerance to different abiotic stresses[J]. Acta Horticulturae Sinica, 2009, 36(8): 1191-1196. | |
| [34] | Pla M, Huguet G, Verdaguer D, et al.Stress proteins co-expressed in suberized and lignified cells and in apical meristems[J]. Plant Science, 1998, 139(1): 49-57. | 
| [35] | Kumar R R, Goswami S, Shamim M, et al.Exploring the heat-responsive chaperones and microsatellite markers associated with terminal heat stress tolerance in developing wheat[J]. Functional & Integrative Genomics, 2017, 17(6): 621-640. | 
| [36] | Chauhan H, Khurana N, Nijhavan A, et al.The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant, Cell & Environment, 2012, 35(11): 1912-1931. | 
| [37] | 左丽萍, 张瑞华, 金桂秀, 等.OsHSP18.0-CI调控水稻对白叶枯病的抗性[J]. 植物病理学报, 2019, 49(1): 90-100. | 
| Zuo L P, Zhang R H, Jin G X, et al.OsHsp18.0-CIregulates disease resistance to bacterial blight in rice[J]. Acta Phytopathologica Sinica, 2019, 49(1): 90-100. | |
| [38] | Mota T M, Oshiquiri L H, Lopes É C V, et al. Hsp genes are differentially expressed duringTrichoderma asperellumself-recognition, mycoparasitism and thermal stress[J]. Microbiological Research, 2019(227): 126296. doi: 10.1016/j.micres.2019.126296. | 
| [39] | Jiang S S, Wu B, Jiang L L, et al.Triticum aestivumheat shock protein 23.6 interacts with the coat protein of wheat yellow mosaic virus[J]. Virus Genes, 2019, 55(2): 209-217. | 
| [40] | 王明乐, 朱旭君, 王伟东, 等. 茶树小分子量热激蛋白基因CsHSP17.2的克隆与表达分析[J]. 南京农业大学学报, 2015, 38(3): 389-394. | 
| Wang M L, Zhu X J, Wang W D, et al.Molecular cloning and expression analysis of low molecular weight heat shock protein geneCsHSP17.2fromCamellia sinensis[J]. Journal of Nanjing Agricultural University, 2015, 38(3): 389-394. | |
| [41] | Wang M L, Zou Z W, Li Q H, et al.Heterologous expression of threeCamellia sinensissmall heat shock protein genes confers temperature stress tolerance in yeast andArabidopsis thaliana[J]. Plant Cell Reports, 2017, 36(7): 1125-1135. | 
| [42] | 张胜. 侧柏对干旱与自然低温胁迫响应的分子机制研究[D]. 杨凌: 西北农林科技大学, 2017. | 
| Zhang S.Studies on mechanisms of molecular response to drought and natural low temperature stress inPlatycladus orientalis(L.) [D]. Yangling: Northwest A&F University, 2017. | |
| [43] | Ding G B, Wu G F, Li B C, et al.High-yield expression inEscherichia coli, biophysical characterization, and biological evaluation of plant toxin gelonin[J]. 3 Biotech, 2019, 9: 19. doi: 10.1007/s13205-018-1559-6. | 
| [44] | Sørensen H P, Mortensen K K.Advanced genetic strategies for recombinant protein expression inEscherichia coli[J]. Journal of Biotechnology, 2005, 115(2): 113-128. | 
| [45] | Rosano G L, Ceccarelli E A.Recombinant protein expression inEscherichia coli: advances and challenges[J]. Frontiers in Microbiology, 2014, 5: 172. doi: 10.3389/fmicb.2014.00172. | 
| [46] | 樊佳, 王毅, 徐莺, 等. 麻疯树小热激蛋白基因JcHSP15.9的原核表达及耐热胁迫[J]. 应用与环境生物学报, 2013, 19(1): 74-78. | 
| Fan J, Wang Y, Xu Y, et al.Expression, purification and heat stress tolerance ofJatropha curcasL.JcHSP15.9gene in prokaryotic cells[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(1): 74-78. | |
| [47] | 胡雨晴. 蜡梅热激蛋白基因CpHSP1的分子特征、原核表达及其转录的实时荧光定量分析[D]. 重庆: 西南大学, 2011. | 
| Hu Y Q.Molecular characteristics, prokaryotic expression and transcriptional expression analysis of a heat shock protein geneCpHSP1fromChimonanthus praecox[D]. Chongqing: Southwest University, 2011. | |
| [48] | 郭会娜. 巴西橡胶树小热激蛋白基因克隆、表达及功能研究[D]. 海口: 海南大学, 2014. | 
| Guo H N.Cloning, expression and functional characterizations of small heat shock protein genes fromHevea brasiliensis[D]. Haikou: Hainan University, 2014. | 
| [1] | 李桂楠, 杨妮, 罗微, 张佳琪, 胡志航, 熊爱生, 郝建楠, 庄静. CsDET2基因的鉴定及其对茶树光周期与非生物胁迫的响应分析[J]. 茶叶科学, 2025, 45(5): 742-756. | 
| [2] | 范延艮, 萧越, 孟凡月, 刘文杰, 张颖, 孙平, 张丽霞, 任丽军. 紫芽茶树品种‘紫娟'花青素合成酶基因CsANS1的克隆与功能分析[J]. 茶叶科学, 2025, 45(5): 757-769. | 
| [3] | 江丽, 李朵姣, 胡新荣, 沈英姿, 郑寨生, 翁晓星, 刘淑婧, 边晓东, 袁名安, 陈暄. 不同栽培模式对籽叶双收茶树新梢生理生化特性的影响[J]. 茶叶科学, 2025, 45(5): 783-794. | 
| [4] | 王开荣, 张龙杰, 梁月荣, 黎晓湘, 郑新强. 茶树叶色鉴别、分类研究与叶色体系构建[J]. 茶叶科学, 2025, 45(5): 795-807. | 
| [5] | 周逸德, 陈家霖, 吴俊梅, 赵竑博, 孙彬妹, 刘少群, 郑鹏. 茶树氮代谢基因:环境胁迫适应机制与育种应用研究进展[J]. 茶叶科学, 2025, 45(4): 545-558. | 
| [6] | 孙梦真, 胡志航, 杨凯欣, 张佳琪, 张楠, 熊爱生, 刘慧, 庄静. 茶树生物钟CsLUX基因的鉴定及其对光合特性的影响[J]. 茶叶科学, 2025, 45(4): 559-570. | 
| [7] | 郑杰, 侯紫妍, 易超, 黄守延, 郭俊齐, 苏会, 周琼琼, 詹强国, 赵仁亮. 水处理工艺对信阳毛尖加工过程中特征香气的影响[J]. 茶叶科学, 2025, 45(4): 687-698. | 
| [8] | 徐歆, 李亚奇, 杨亦扬, 徐琪, 钱雪飞, 马春雷, 梅菊芬. AI茶树育种技术:以黄化性状预测为例[J]. 茶叶科学, 2025, 45(3): 393-401. | 
| [9] | 翟秀明, 李解, 肖富良, 唐敏, 曾乐武, 侯渝嘉, 汤燚. 茶树茎叶并联变异差异表达基因的WGCNA分析[J]. 茶叶科学, 2025, 45(3): 402-414. | 
| [10] | 张辉, 刘丰静, 李慧玲, 李良德, 王庆森, 王定锋. 茶橙瘿螨初期侵染不同抗性茶树品种的代谢组分析[J]. 茶叶科学, 2025, 45(3): 415-426. | 
| [11] | 王金波, 谢思艺, 窦祥亚, 申小华, 田娜, 刘硕谦. 茶树PATL基因家族鉴定及CsPATL1上游转录调控分析[J]. 茶叶科学, 2025, 45(2): 191-200. | 
| [12] | 郭佳璐, 璩馥榕, 蔡天晨, 赵洋, 杨培迪, 刘勇, 周跃斌, 刘振. 基于农艺性状和SNP分子标记的湖南78份茶树种质资源遗传多样性研究[J]. 茶叶科学, 2025, 45(2): 219-233. | 
| [13] | 李悦欣, 鄢东海, 张金峰, 蒲运丹, 李帅, 孟泽洪. 茶树L型凝集素受体激酶基因家族鉴定及其对茶轮斑病和茶炭疽病的响应[J]. 茶叶科学, 2025, 45(2): 253-265. | 
| [14] | 杨芳, 江冰冰, 雷金梅, 郭存武, 李丽梅, 徐嘉忆, 王兴华, 袁文侠, 王白娟. 茶树叶斑病病原菌的分离与鉴定[J]. 茶叶科学, 2025, 45(2): 266-272. | 
| [15] | 晏朵, 余鹏辉, 龚雨顺. 萎凋过程中环境胁迫对茶叶品质影响研究进展[J]. 茶叶科学, 2025, 45(1): 1-14. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
										
  | 
								||
浙公网安备 33019902000101号