






茶叶科学 ›› 2020, Vol. 40 ›› Issue (3): 319-327.doi: 10.13305/j.cnki.jts.2020.03.003
何斐, 李冬花, 卜凡
收稿日期:2019-10-27
修回日期:2019-12-24
出版日期:2020-06-15
发布日期:2020-06-09
作者简介:何斐,女,副教授,主要从事微生物资源利用方面的研究。hefei6000@163.com
基金资助:HE Fei, LI Donghua, BU Fan
Received:2019-10-27
Revised:2019-12-24
Online:2020-06-15
Published:2020-06-09
摘要: 对陕西安康汉水韵茶园栽培的5个品种茶树根际丛枝菌根(Arbuscular mycorrhiza,AM)真菌群落结构特征进行分析,以期丰富我国茶树AM真菌种质资源库。结果表明,不同品种茶树根际AM真菌种丰度及种属组成等存在差异。其中,紫阳群体种茶树根际分离的AM真菌最多(6种),陕茶1号、龙井长叶、龙井43和福鼎大白茶各分离到5、4、4种和3种。龙井长叶茶树根际AM真菌孢子密度最高(每克干土含3.57个孢子),龙井43最低(每克干土含1.10个孢子)。紫阳群体种茶树的AM真菌物种多样性Shannon-Wiener和均匀度指数均达到最高,分别为0.63和0.096,龙井长叶最低(0.18和0.027)。龙井长叶的菌根定殖率最高(29.5%),福鼎大白最低(15.8%)。不同茶树品种AM真菌种类组成的相似性系数维持在0.111~0.750,其中,龙井长叶与龙井43茶树根际AM真菌种类组成相似性系数最高,而福鼎大白和紫阳群体种相似性系数最低。研究表明,不同品种茶树根际AM真菌群落结构存在一定的差异,根际土壤中鉴定的AM真菌资源对进一步筛选和研发茶树专用AM真菌菌剂,促进茶产业发展具有重要意义。
中图分类号:
何斐, 李冬花, 卜凡. 不同品种茶树根际AM真菌群落结构分析[J]. 茶叶科学, 2020, 40(3): 319-327. doi: 10.13305/j.cnki.jts.2020.03.003.
HE Fei, LI Donghua, BU Fan. Analysis of Arbuscular Mycorrhizal Fungal Community Structure in the Rhizosphere of Different Tea Cultivars[J]. Journal of Tea Science, 2020, 40(3): 319-327. doi: 10.13305/j.cnki.jts.2020.03.003.
| [1] | 李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体中碳、氮代谢及其相互关系[J]. 应用生态学报, 2014, 25(3): 903-910. |
| Li Y J, Liu Z L, He X Y, et al.Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 903-910. | |
| [2] | Zhu C, Tian G L, Luo G W, et al.N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield[J]. Agriculture, Ecosystems & Environment, 2018, 254: 191-201. |
| [3] | Wang C, White P J, Li C J.Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site[J]. Mycorrhiza, 2016, 27(4): 1-13. |
| [4] | Zhang J, Wang F, Che R X, et al.Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe[J]. Scientific Reports, 2016, 6: 23488. doi: 10.1038/srep23488. |
| [5] | Manoharan L, Rosenstock N P, Williams A, et al.Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity[J]. Applied Soil Ecology, 2017, 115: 53-59. |
| [6] | Liu H G, Wang Y J, Tang M.Arbuscular mycorrhizal fungi diversity associated with two halophytesLycium barbarumL. andElaeagnus angustifoliaL. in Ningxia, China[J]. Archives of Agronomy and Soil Science, 2017, 63(6): 796-806. |
| [7] | 张海波, 梁月明, 冯书珍, 等. 土壤类型和树种对根际土丛枝菌根真菌群落及其根系侵染率的影响[J]. 农业现代化研究, 2016, 37(1): 187-194. |
| Zhang H B, Liang Y M, Feng S Z, et al.The effects of soil types and plant species on arbuscular mycorrhizal fungi community and colonization in the rhizosphere[J]. Research of Agricultural Modernization, 2016, 37(1): 187-194. | |
| [8] | 蔡邦平, 陈俊愉, 张启翔, 等. 云南昆明梅花品种根围丛枝菌根真菌多样性研究[J]. 北京林业大学学报, 2013, 35(S1): 38-41. |
| Cai B P, Chen J Y, Zhang Q X, et al.Diversity of arbuscular mycorrhizal fungi associated withPrunus mumein Kunming, Yunnan, China[J]. Journal of Beijing Forestry University, 2013, 35(S1): 38-41. | |
| [9] | 任禛, 尹敏, 夏体渊, 等. 不同烤烟品种根系丛枝菌根真菌(AMF)群落结构和组成的差异分析[J]. 烟草科技, 2016, 49(3): 1-9. |
| Ren Z, Yin M, Xia T Y, et al.Structure and composition difference of arbuscular mycorrhizal fungi community in roots of flue-cured tobacco varieties[J]. Tobacco Science & Technology, 2016, 49(3): 1-9. | |
| [10] | 刘辉, 陈梦, 黄引娣, 等. 安徽茶区茶树丛枝菌根真菌多样性[J]. 应用生态学报, 2017, 28(9): 2897-2906. |
| Liu H, Chen M, Huang Y D, et al.Diversity of arbuscular mycorrhizal fungi in the rhizosphere of tea plant from Anhui tea area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2897-2906. | |
| [11] | 罗勇, 欧淑琼, 陈丝, 等. 基于RNA-Seq的茶树CsMYB生物信息学分析[J]. 分子植物育种, 2017, 15(6): 2119-2125. |
| Luo Y, Ou S Q, Chen S, et al.Bioinformatics analysis of CsMYB in tea plant (Camellia sinensis) based on RNA-seq[J]. Molecular Plant Breeding, 2017, 15(6): 2119-2125. | |
| [12] | 国家茶叶产业技术体系产业经济研究室. 2018年我国茶叶产销形势分析[J]. 中国茶叶, 2019, 41(4): 32-33. |
| Industrial Economy Research Office of National Tea Industry Technology System. Analysis on the situation of tea production and marketing in China in 2018[J]. China Tea, 2019, 41(4): 32-33. | |
| [13] | 吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根围AM真菌多样性[J]. 生物多样性, 2009, 17(5): 499-505. |
| Wu L S, Wang Y, Li M, et al.Arbuscular mycorrhizal fungi diversity in the rhizosphere of tea plant (Camellia sinensis) grown in Laoshan, Shandong[J]. Biodiversity Science, 2009, 17(5): 499-505. | |
| [14] | Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites[J]. Biology & Fertility of Soils, 2008, 44(3): 491-500. |
| [15] | 查林. 安康茶叶产业发展战略研究[D]. 西安: 西安理工大学, 2006. |
| Cha L.The discussion on the development strategy of Ankang tea industry [D]. Xi′an: Xi′an University of Technology, 2006. | |
| [16] | Phillips J M, Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assement of infection[J]. Transations of the British Mycological Society, 1970, 55(1): 158-161. |
| [17] | 柳洁, 肖斌, 王丽霞, 等. 盐胁迫下丛枝菌根(AM)对茶树生长及茶叶品质的影响[J]. 茶叶科学, 2013, 33(2): 140-146. |
| Liu J, Xiao B, Wang L X, et al.Influence of AM on the growth of tea plant and tea quality under salt stress[J]. Journal of Tea Science, 2013, 33(2): 140-146. | |
| [18] | 张春兰, 李苇洁, 姚红艳, 等. 不同猕猴桃品种根际AM真菌多样性与土壤养分相关性分析[J]. 果树学报, 2017, 34(3): 90-99. |
| Zhang C L, Li W J, Yao H Y, et al.Correlation study on the diversity of the AM fungi and soil nutrients in the rhizosphere of different kiwifruit cultivars[J]. Journal of Fruit Science, 2017, 34(3): 90-99. | |
| [19] | Ianson D C, Allen M F.The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites[J]. Mycologia, 1986, 78(2): 164-168. |
| [20] | Schenck N C, Pérez Y.A manual for the identification of vesicular arbuscular mycorrhizal fungi[M]. Florida: University of Florida: 1990: 1-233. |
| [21] | Redecker D, Schüßler A, Stockinger H.An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)[J]. Mycorrhiza, 2013, 23(7): 515-531. |
| [22] | 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850. |
| Wang Y S, Liu R J.A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota[J]. Mycosystema, 2017, 36(7): 820-850. | |
| [23] | He F, Tang M, Zhong S L.Effects of soil and climatic factors on arbuscular mycorrhizal fungi in rhizosphere soil underRobinia pseudoacaciain the Loess Plateau, China[J]. European Journal of Soil Science, 2016, 67(6): 847-856. |
| [24] | Van der heijden M G A, Klironomos J N, Ursic M. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 396: 69-72. |
| [25] | 盛敏, 唐明, 张峰峰, 等. 土壤因子对甘肃、宁夏和内蒙古盐碱土中AM真菌的影响[J]. 生物多样性, 2011, 19(1): 85-92. |
| Sheng M, Tang M, Zhang F F, et al.Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia[J]. Biodiversity Science, 2011, 19(1): 85-92. | |
| [26] | Shannon C E, Weaver W.The mathematical theory of communication [M]. Urbana: Urbana university of Illinois Press. 1949, 85(2): 117. |
| [27] | Pielou E C.The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144. |
| [28] | Pielou E C.Ecological Diversity[M]. New York: John Wiley and Sons Inc, 1975. |
| [29] | 刘洁, 刘静, 金海如. 丛枝菌根真菌N代谢与C代谢研究进展[J]. 微生物学杂志, 2011, 31(6): 70-75. |
| Liu J, Liu J, Jin H R.Advancement in arbuscular mycorrhizal fungi’s N metabolic and C metabolic[J]. Journal of Microbiology, 2011, 31(6): 70-75. | |
| [30] | 郭绍霞, 刘润进. 不同品种牡丹对丛枝菌根真菌群落结构的影响[J]. 应用生态学报, 2010, 21(8): 1993-1997. |
| Guo S X, Liu R J.Effects of different peony cultivars on community structure of arbuscular mycorrhizal fungi in rhizosphere soil[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 1993-1997. | |
| [31] | Eom A H, Hartnett D C, Wilson G W T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie[J]. Oecologia, 2000, 122: 435-444. |
| [32] | 李岩, 焦惠, 徐丽娟, 等. AM真菌群落结构与功能研究进展[J]. 生态学报, 2010, 30(4): 1089-1096. |
| Li Y, Jiao H, Xu L J, et al.Advances in the study of community structure and function of arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2010, 30(4): 1089-1096. | |
| [33] | 张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372. |
| Zhang W J, Rong J, Wei C L, et al.Domestication origin and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372. | |
| [34] | 张成才, 刘园, 姜燕华, 等. SSR标记鉴定浙江省主要无性系茶树品种的研究[J]. 植物遗传资源学报, 2014, 15(5): 926-931. |
| Zhang C C, Liu Y, Jiang Y H, et al.Application of SSR markers in cultivar identification of clonal tea plant in Zhejiang province, China[J]. Journal of Plant Genetic Resources, 2014, 15(5): 926-931. | |
| [35] | Chen Y S, Chen G, Fu X, e al. Phytochemical profiles and antioxidant activity of different varieties ofAdinandratea (AdinandraJack)[J]. Journal of Agricultural & Food Chemistry, 2015, 63(1): 169-176. |
| [36] | 吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根际丛枝菌根真菌调查[J]. 青岛农业大学学报: 自然科学版, 2009, 26(3): 171-173. |
| Wu L S, Wang Y, Li M, et al.A survey of arbuscular mycorrhizal fungi in the rhizosphere ofCamellia sinensisin Laoshan[J]. Journal of Qingdao Agricultural University (Natural Science), 2009, 26(3): 171-173. | |
| [37] | 卢东升, 吴小芹. 豫南茶园VA菌根真菌种类研究[J]. 南京林业大学学报: 自然科学版, 2005, 29(3): 33-36. |
| Lu D S, Wu X Q.Species of VAM fungi around tea roots in the southern area of Henan province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2005, 29(3): 33-36. | |
| [38] | 吴铁航, 郝文英, 林先贵, 等. 红壤中VA菌根真菌(球囊霉目)的种类和生态分布[J]. 真菌学报, 1995, 14(2): 81-85. |
| Wu T H, Hao W Y, Lin X G, et al.VA mycorrhizal fungi (Glomales) and their ecological distribution in red soils[J]. Acta Mycologica Sinica, 1995, 14(2): 81-85. | |
| [39] | Shi Z Y, Gao S C, Wang F Y.Biodiversity of arbuscular mycorrhizal fungi in desert ecosystems[J]. Arid Zone Research, 2008, 25(6): 783-789. |
| [40] | 贺学礼, 陈烝, 郭辉娟, 等. 荒漠柠条锦鸡儿AM真菌多样性[J]. 生态学报, 2012, 32(10): 3041-3049. |
| He X L, Chen Z, Guo H J, et al.Diversity of arbuscular fungi in the rhizosphere ofCaragana korshinskiiKom. in desert zone[J]. Acta Ecologica Sinica, 2012, 32(10): 3041-3049. | |
| [41] | 吕杰, 吕光辉, 马媛. 新疆艾比湖流域胡杨幼苗根际AM真菌多样性特征[J]. 林业科学, 2016, 52(4): 59-67. |
| Lv J, Lv G H, Ma Y.Diversity of Arbuscular mycorrhizal fungi in the rhizosphere ofPopulus euphraticaseedlings in Ebinur lake basin, Xinjiang[J]. Scientia Silvae Sinicae, 2016, 52(4): 59-67. | |
| [42] | 马忠莉. 松嫩草地丛枝菌根真菌孢子多样性对施肥的响应[D]. 长春: 东北师范大学, 2016. |
| Ma Z L.Impacts of fertilization on the diversity of arbuscular mycorrhizal fungal spore in Songnen grassland [D]. Changchun: Northeast Normal University, 2016. | |
| [43] | 李华健, 贺学礼. 河北峰峰矿区构树AM真菌物种多样性及生态适应性[J]. 河北大学学报(自然科学版), 2019, 39(3): 278-287. |
| Li H J, He X L.Species diversity and ecological adaptability of AM fungi inBroussonetia papyriferafrom Fengfeng mining area in Hebei province[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3): 278-287. | |
| [44] | 贺学礼, 郭辉娟, 王银银, 等. 内蒙古农牧交错区沙蒿根围AM真菌物种多样性[J]. 河北大学学报(自然科学版), 2012, 32(5): 506-514. |
| He X L, Guo H J, Wang Y Y, et al.Species diversity of arbuscular mycorrhizal fungi in the rhizosphere ofArtemisia sphaerocephalain Inner Mongolia[J]. Journal of Hebei University (Natural Science Edition), 2012, 32(5): 506-514. |
| [1] | 李桂楠, 杨妮, 罗微, 张佳琪, 胡志航, 熊爱生, 郝建楠, 庄静. CsDET2基因的鉴定及其对茶树光周期与非生物胁迫的响应分析[J]. 茶叶科学, 2025, 45(5): 742-756. |
| [2] | 范延艮, 萧越, 孟凡月, 刘文杰, 张颖, 孙平, 张丽霞, 任丽军. 紫芽茶树品种‘紫娟'花青素合成酶基因CsANS1的克隆与功能分析[J]. 茶叶科学, 2025, 45(5): 757-769. |
| [3] | 江丽, 李朵姣, 胡新荣, 沈英姿, 郑寨生, 翁晓星, 刘淑婧, 边晓东, 袁名安, 陈暄. 不同栽培模式对籽叶双收茶树新梢生理生化特性的影响[J]. 茶叶科学, 2025, 45(5): 783-794. |
| [4] | 王开荣, 张龙杰, 梁月荣, 黎晓湘, 郑新强. 茶树叶色鉴别、分类研究与叶色体系构建[J]. 茶叶科学, 2025, 45(5): 795-807. |
| [5] | 周逸德, 陈家霖, 吴俊梅, 赵竑博, 孙彬妹, 刘少群, 郑鹏. 茶树氮代谢基因:环境胁迫适应机制与育种应用研究进展[J]. 茶叶科学, 2025, 45(4): 545-558. |
| [6] | 孙梦真, 胡志航, 杨凯欣, 张佳琪, 张楠, 熊爱生, 刘慧, 庄静. 茶树生物钟CsLUX基因的鉴定及其对光合特性的影响[J]. 茶叶科学, 2025, 45(4): 559-570. |
| [7] | 郑杰, 侯紫妍, 易超, 黄守延, 郭俊齐, 苏会, 周琼琼, 詹强国, 赵仁亮. 水处理工艺对信阳毛尖加工过程中特征香气的影响[J]. 茶叶科学, 2025, 45(4): 687-698. |
| [8] | 徐歆, 李亚奇, 杨亦扬, 徐琪, 钱雪飞, 马春雷, 梅菊芬. AI茶树育种技术:以黄化性状预测为例[J]. 茶叶科学, 2025, 45(3): 393-401. |
| [9] | 翟秀明, 李解, 肖富良, 唐敏, 曾乐武, 侯渝嘉, 汤燚. 茶树茎叶并联变异差异表达基因的WGCNA分析[J]. 茶叶科学, 2025, 45(3): 402-414. |
| [10] | 张辉, 刘丰静, 李慧玲, 李良德, 王庆森, 王定锋. 茶橙瘿螨初期侵染不同抗性茶树品种的代谢组分析[J]. 茶叶科学, 2025, 45(3): 415-426. |
| [11] | 王金波, 谢思艺, 窦祥亚, 申小华, 田娜, 刘硕谦. 茶树PATL基因家族鉴定及CsPATL1上游转录调控分析[J]. 茶叶科学, 2025, 45(2): 191-200. |
| [12] | 郭佳璐, 璩馥榕, 蔡天晨, 赵洋, 杨培迪, 刘勇, 周跃斌, 刘振. 基于农艺性状和SNP分子标记的湖南78份茶树种质资源遗传多样性研究[J]. 茶叶科学, 2025, 45(2): 219-233. |
| [13] | 李悦欣, 鄢东海, 张金峰, 蒲运丹, 李帅, 孟泽洪. 茶树L型凝集素受体激酶基因家族鉴定及其对茶轮斑病和茶炭疽病的响应[J]. 茶叶科学, 2025, 45(2): 253-265. |
| [14] | 杨芳, 江冰冰, 雷金梅, 郭存武, 李丽梅, 徐嘉忆, 王兴华, 袁文侠, 王白娟. 茶树叶斑病病原菌的分离与鉴定[J]. 茶叶科学, 2025, 45(2): 266-272. |
| [15] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
浙公网安备 33019902000101号