[1] Elgar M A, Zhang D, Wang Q, et al.Insect antennal morphology: the evolution of diverse solutions to odorant perception[J]. The Yale Journal of Biology and Medicine, 2018, 91: 457-469. [2] Leal W S.Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annual Review of Entomology, 2013, 58: 373-391. [3] Angeli S, Ceron F, Scaloni A, et al.Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria[J]. European Journal of Biochemistry, 1999, 262: 745-754. [4] Pelosi P, Iovinella I, Zhu J, et al.Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects[J]. Biological Reviews Cambridge Philosophical Society, 2018, 93: 184-200. [5] Waris M I, Younas A, Adeel M M, et al.The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens[J]. Insect Science, 2020, 27(3): 531-544. [6] Sun L, Zhou J J, Gu S H, et al.Chemosensillum immunolocalization and ligand specificity of chemosensory proteins in the alfalfa plant bug Adelphocoris lineolatus (Goeze)[J]. Scientific Reports, 2015, 5: 8073. doi: 10.1038/srep08073. [7] Qiao H L, Deng P Y, Li D D, et al.Expression analysis and binding experiments of chemosensory proteins indicate multiple roles in Bombyx mori[J]. Journal of Insect Physiology, 2013, 59: 667-675. [8] Xuan N, Guo X, Xie H Y, et al.Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins[J]. Insect Science, 2015, 22(2): 203-219. [9] Guo W, Wang X H, Ma Z Y, et al.CSP and Takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust[J]. PLoS Genetics, 2011, 7: e1001291. doi: 10.1371/journal.pgen.1001291. [10] Kitabayashi A N, Arai T, Kubo T, et al.Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach)[J]. Insect Biochemistry and Molecular Biology, 1998, 28(10): 785-790. [11] Nomura A, Kawasaki K, Kubo T, et al.Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach)[J]. International Journal of Developmental Biology, 1992, 36(3): 391-398. [12] Cheng D, Lu Y, Zeng L, et al.Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta[J]. Scientific Reports, 2015, 5: 9245. [13] 唐美君, 王志博, 郭华伟, 等. 茶尺蠖和灰茶尺蠖幼虫及成虫的鉴别方法[J]. 植物保护, 2019, 45(4): 172-175. Tang M J, Wang Z B, Guo H W, et al.An identification method for the adult and larva between the two sibling species Ectropis obliqua and Ectropis grisescens[J]. Plant Protection, 2019, 45(4): 172-175. [14] Li Z Q, Cai X M, Luo Z X, et al.Geographical distribution of Ectropis grisescens (Lepidoptera: Geometridae) and Ectropis obliqua in China and description of an efficient identification method[J]. Journal of Economic Entomology, 2019, 11(1): 277-283. [15] 白家赫, 王志博, 肖强. 浙江茶区茶尺蠖两近缘种的遗传分化及分布[J]. 昆虫学报, 2018, 61(6): 741-748. Bai J H, Wang Z B, Xiao Q.Genetic differentiation and distribution of two sibling species of tea geometrids in tea-growing areas in Zhejiang, eastern China[J]. Acta Entomological Sinica, 2018, 61(6): 741-748. [16] 白家赫, 唐美君, 殷坤山, 等. 灰茶尺蛾和小茶尺蠖两近缘种的生物学特性差异[J]. 浙江农业学报, 2018, 30(5): 797-803. Bai J H, Tang M J, Yin K S, et al.Differential biological characteristics between closely related tea geometrid species, Ectropis obliqua and Ectropis grisescens[J]. Acta Agriculture Zhejiangensis, 2018, 30(5): 797-803. [17] Zhang G H, Yuan Z J, Yin K S, et al.Asymmetrical reproductive interference between two sibling species of tea looper: Ectropis grisescens and Ectropis obliqua[J]. Bulletin of Entomological Research, 2016: 1-8. doi: 10.1017/s0007485316000602. [18] Zhang G H, Yuan Z J, Zhang C, et al.Detecting deep divergence in seventeen populations of tea geometrid (Ectropis obliqua Prout) in China by COI mtDNA and cross-breeding[J]. PLoS One, 2014, 9: e99373. doi: 10.1371/journal.pone.0099373. [19] Luo Z X, Li Z Q, Cai X M, et al.Evidence of premating isolation between two sibling moths: Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae)[J]. Journal of Economic Entomology, 2017, 110(6): 2364-2370. [20] Wang Z B, Li H, Zhou X G, et al.Comparative characterization of microbiota between the sibling species of tea geometrid moth Ectropis obliqua Prout and E. grisescens Warren[J]. Bulletin of Entomological Research, 2020,110(6): 684-693. [21] 王志博, 白家赫, 周孝贵, 等. 3种抗生素处理对灰茶尺蛾内生菌群的影响[J]. 茶叶科学, 2021, 41(1): 90-100. Wang Z B, Bai J H, Zhou X G, et al.Effect of three antibiotic treatments on bacterial endosymbiont community of Ectropis grisescens Warren[J]. Journal of Tea Science, 2021, 41(1): 90-100. [22] Sun L, Mao T F, Zhang Y X, et al.Characterization of candidate odorant-binding proteins and chemosensory proteins in the tea geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae)[J]. Archives of Insect Biochemistry and Physiology, 2017, 94(4): e21383. doi: 10.1002/arch.21383. [23] 周孝贵, 付建玉, 刘守安, 等. 茶尺蠖和灰茶尺蠖内共生菌Wolbachia的分子检测及序列分析[J]. 应用昆虫学报, 2016, 53(4): 782-792. Zhou X G, Fu J Y, Liu S A, et al.Molecular detection and sequence analysis of Wolbachia strains inEctropis obliqua and Ectropis grisescens (Lepidoptera: Geometridae)[J]. Chinese Journal of Applied Entomology, 2016, 53(4): 782-792. [24] Jing T T, Zhang N, Gao T, et al.Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: a case study in Camellia sinensis[J]. Plant Cell and Environment, 2019, 42(4): 1352-1367. [25] Sun X L, Wang G C, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. Journal of Chemical Ecology, 2014, 40: 1080-1089. [26] Sun L, Wang Q, Zhang Y, et al.Expression patterns and colocalization of two sensory neurone membrane proteins in Ectropis obliqua Prout, a geometrid moth pest that uses Type-II sex pheromones[J]. Insect Molecular Biology, 2019, 28: 342-354. [27] Pelosi P, Zhou J J, Ban L P, et al.Soluble proteins in insect chemical communication[J]. Cellular and Molecular Life Sciences, 2006, 63: 1658-1676. [28] Zhang Y N, Ye Z F, Yang K, et al.Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles[J]. Gene, 2014, 536: 279-286. [29] Gu S H, Wang S Y, Zhang X Y, et al.Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition[J]. PLoS One, 2012, 7: e42871. doi: 10.1371/journal.pone.0042871. [30] Albert P J.Electrophysiological responses to sucrose from a gustatory sensillum on the larval maxillary palp of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae)[J]. Journal of Insect Physiology, 2003, 49(8): 733-738. [31] del Campo M L, Miles C I. Chemosensory tuning to a host recognition cue in the facultative specialist larvae of the moth Manduca sexta[J]. Journal of Experimental Biology, 2003, 206: 3979-3990. [32] Zacharuk R Y, Shields, V D.Sensilla of immature insects[J]. Annual Review of Entomology, 1991, 36: 331-354. [33] 张方梅, 金银利, 张丽丽, 等. 灰茶尺蠖成虫触角及幼虫头部感器超微结构[J]. 昆虫学报, 2019, 62(6): 743-755. Zhang F M, Jin Y L, Zhang L L, et al.Ultrastructure of the sensilla on adult antenna and larval head of Ectropis grisescens (Lepidoptera: Geometridae)[J]. Acta Entomological Sinica, 2019, 62(6): 743-755. [34] Liu G X, Xuan N, Chu D, et al.Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1[J]. Archives of Insect Biochemistry and Physiology, 2014, 85(3): 137-151. [35] Li H L, Tan J, Song X M, et al.Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function[J]. Biochemical and Biophysical Research Communications, 2017, 486(2): 391-397. [36] Cai T W, Zhang Y H, Liu Y, et al.Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress[J]. Insect Science, 2021, 28: 355-362. |