[1] Leung J, Giraudat J.Abscisic acid signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 199-222. [2] Chen K, Li G J, Bressan R A, et al.Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. [3] Shu K, Chen Q, Wu Y R, et al.ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein Levels[J]. The Plant Journal, 2016, 85(3): 348-361. [4] Shu K, Chen Q, Wu Y, et al.ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription[J]. Journal of Experimental Botany, 2015, 67(1): 195-205. [5] 陈唯, 曾晓贤, 谢楚萍, 等. 植物内源ABA水平的动态调控机制[J]. 植物学报, 2019, 54(6): 677-687. Chen W, Zeng X X, Xie C P, et al.The dynamic regulation mechanism of the endogenous ABA in plant[J]. Chinese Bulletin of Botany, 2019, 54(6): 677-687. [6] Sauter A, Davies W J, Hartung W.The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot[J]. Journal of Experimental Botany, 2001, 52(363): 1991-1997. [7] Ding F, Wang X Z, Li Z Y, et al.Jasmonate positively regulates cold tolerance by promoting ABA biosynthesis in tomato[J]. Plants, 2022, 12(1): 60. doi: 10.3390/plants12010060. [8] Huang Y Y, Zhou J H, Li Y X, et al.Salt stress promotes abscisic acid accumulation to affect cell proliferation and expansion of primary roots in rice[J]. International Journal of Molecular Sciences, 2021, 22(19): 10892. doi: 10.3390/ijms221910892. [9] Peng Z, Hu Y, Zhang J L, et al.Xanthomonas translucens commandeers the host Rate-limiting step in ABA biosynthesis for disease susceptibility[J]. PNAS, 2019, 116(42): 20938-20946. [10] Mittler R, Blumwald E.The roles of ROS and ABA in systemic acquired acclimation[J]. The Plant Cell, 2015, 27(1): 64-70. [11] Lefebvre V, North H, Frey A, et al.Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy[J]. The Plant Journal, 2006, 45(3): 309-319. [12] Pei X X, Wang X Y, Fu G Y, et al.Identification and functional analysis of 9-cis-epoxy carotenoid dioxygenase (NCED) homologs in G. Hirsutum[J]. International Journal of Biological Macromolecules, 2021, 182: 298-310. [13] Huang Y, Jiao Y, Xie N K, et al.OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice[J]. Plant Science, 2019, 287: 110188. doi: 10.1016/j.plantsci.2019.110188. [14] Jiang Y J, Liang G, Yu D Q.Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J]. Molecular Plant, 2012, 5(6): 1375-1388. [15] Huang S Z, Ma Z M, Hu L J, et al.Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses[J]. Plant Physiology and Biochemistry, 2021, 167: 22-30. [16] An S M, Liu Y, Sang K Q, et al.Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J]. Journal of Integrative Plant Biology, 2023, 65(1): 10-24. [17] 丁杰荣, 张静, 江立群, 等. OsWRKY67负向调控水稻耐旱性的功能分析[J]. 分子植物育种, 2023, 21(10): 3272-3281. Ding J R, Zhang J, Jiang L Q, et al.Function analysis of OsWRKY67 negatively regulating drought-tolerance in rice[J]. Molecular Plant Breeding, 2023, 21(10): 3272-3281. [18] 倪子鑫, 武清扬, 杨云, 等. 茶树CsCCD基因家族全基因组鉴定及乌龙茶LED补光晾青下表达分析[J]. 生物工程学报, 2022, 38(1): 359-373. Ni Z X, Wu Q Y, Yang Y, et al.Genome-wide identification of CsCCD gene family in tea plant (Camellia sinensis) and expression analysis of the oolong tea processing with supplementary LED light[J]. Chinese Journal of Biological Engineering, 2022, 38(1): 359-373. [19] Cho J-Y, Mizutani M, Shimizu B, et al.Chemical profiling and gene expression profiling during the manufacturing process of taiwan oolong tea “oriental beauty”[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(6): 1476-1486. [20] 王赞, 陈丹, 岳川, 等. 茶树CsNCED2基因的克隆和表达分析[J]. 西北植物学报, 2018, 38(6): 994-1002. Wang Z, Chen D, Yue C, et al.Cloning and expression analysis of CsNCED2 gene in tea plant (Camellia sinensis)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(6): 994-1002. [21] Liu S C, Jin J Q, Ma J Q, et al.Transcriptomic analysis of tea plant responding to drought stress and recovery[J]. Plos One, 2016, 11(1): e0147306. doi: 10.1371/journal.pone.0147306. [22] Zhang Y H, Xiao Y Z, Zhang Y G, et al.Accumulation of galactinol and ABA is involved in exogenous EBR-induced drought tolerance in tea plants[J]. Journal of Agricultural and Food Chemistry, 2022, 70(41): 13391-13403. [23] Gao M J, Yin X, Yang W B, et al.GDSL lipases modulate immunity through lipid homeostasis in rice[J]. PLOS Pathogens, 2017, 13(11): e1006724. doi: 10.1371/journal.ppat.1006724. [24] Patankar H V, Al-Harrasi I, Al-Yahyai R, et al.Functional characterization of date palm aquaporin gene PdPIP1;2 confers drought and salinity tolerance to yeast and arabidopsis[J]. Genes, 2019, 10(5): 390. doi: 10.3390/genes10050390. [25] Yoon J S, Flores P C, Seo Y W.Overexpression of BdASR2 plays a positive role in response to salt tolerance in Brachypodium distachyon[J]. Journal of Plant Biology, 2021, 65: 111-119. [26] Beisson F, Li Y H, Bonaventure G, et al.The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis[J]. The Plant Cell, 2007, 19(1): 351-368. [27] 黄桂媛, 张瑛, 林玲, 等. 酵母单杂交文库构建及巨峰葡萄VvFT基因启动子上游调控因子筛选[J]. 南方农业学报, 2020, 51(12): 2875-2883. Huang G Y, Zhang Y, Lin L, et al.Yeast one-hybrid library construction and screening of upstream regulators of VvFT promoter in kyoho grape[J]. Journal of Southern Agriculture, 2020, 51(12): 2875-2883. [28] 许奕, 李羽佳, 魏卿, 等. 香蕉MaAQP1启动子诱饵载体及干旱胁迫酵母单杂交cDNA文库的构建[J]. 福建农业学报, 2020, 35(10): 1078-1085. Xu Y, Li Y J, Wei Q, et al.Constructions of banana MaAQP1 bait vector and drought-resistance cDNA library[J]. Fujian Journal of Agricultural Sciences, 2020, 35(10): 1078-1085. [29] 郇蕾, 王旭旭, 陈修淼, 等. 桃ABA信号关键基因PpABI5酵母单杂交文库构建及其上游转录因子的筛选[J]. 植物生理学报, 2017, 53(7): 1259-1266. Huan L, Wang X X, Chen X M, et al.Constructing yeast one-hybrid library and screening the potential regulator of PpABI5 in peach (Prunus persica)[J]. Plant Physiology Journal, 2017, 53(7): 1259-1266. [30] Lee S U, Mun B G, Bae E K, et al.Drought stress-mediated transcriptome profile reveals NCED as a key player modulating drought tolerance in Populus davidiana[J]. Frontiers in Plant Science, 2021, 12: 755539. doi: 10.3389/fpls.2021.755539. [31] Estrada-Melo A C, Ma Co, Reid M S, et al. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in Petunia[J]. Horticulture Research, 2015, 2(1): 15013. doi: 10.1038/hortres.2015.13. [32] Wan S Q, Wang W D, Zhou T S, et al.Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress[J]. Plant Growth Regulation, 2018, 84(3): 481-492. [33] Ni Z Q, Jin J, Ye Y, et al.Integrative transcriptomic and phytohormonal analyses provide insights into the cold injury recovery mechanisms of tea leaves[J]. Plants, 2022, 11(20): 2751. doi: 10.3390/plants11202751. [34] Shang X G, Yu Y J, Zhu L J, et al.A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis[J]. Plant Science, 2020, 296: 110498. doi: 10.1016/j.plantsci.2020.110498. [35] Ma H Z, Liu C, Li Z X, et al.ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2): 753-770. |