[1] 洪晓月. 农业螨类学[M]. 北京: 中国农业出版社, 2012: 193-194. Hong X Y.Agricultural acarology [M]. Beijing: China Agriculture Press, 2012: 193-194. [2] 吴光远, 曾明森. 福建茶树病虫害与天敌图谱[M]. 北京: 中国农业科学技术出版社, 2014: 113-114. Wu G Y, Zeng M S.Fujian tea plant diseases and insect pests and natural enemies map [M]. Beijing: China Agricultural Science and Technology Press, 2014: 113-114. [3] 古德祥, 朱麟. 植物抗虫性概念的当代内涵[J]. 昆虫知识, 1999, 36(6): 355-360. Gu D X, Zhu L.The developing implications of plant resistance to insect pests[J]. Entomological Knowledge, 1999, 36(6): 355-360. [4] Haukioja E.Induction of defenses in trees[J]. Annual Review of Entomology, 1991, 36(1): 25-42. [5] 陈华才. 茶树叶表理化特征对茶橙瘿螨为害的影响[J]. 中国茶叶, 1994, 16(5): 12-13. Chen H C.Effects of physicochemical characteristics of tea leaves on the damage of Acaphylla theae[J]. China Tea, 1994, 16(5): 12-13. [6] 陈华才, 许宁, 陈雪芬, 等. 茶树对茶橙瘿螨抗性机制的研究[J]. 植物保护学报, 1996, 23(2): 137-142. Chen H C, Xu N, Chen X F, et al.On the resistance mechanisms of tea clones to pink tea rust mite[J]. Journal of Plant Protection, 1996, 23(2): 137-142. [7] 陈华才, 许宁, 陈宗懋. 游离氨基酸含量与茶树抗螨性的关系[J]. 植物保护学报, 2000, 27(4): 338-342. Chen H C,Xu N,Chen Z M.On the relationship between content of free amino acid in tea shoot and resistance of tea tree to tea pink mite Acaphylla theae Watt[J]. Journal of Plant Protection, 2000, 27(4): 338-342. [8] Zhang J, Zhang X, Ye M, et al.The jasmonic acid pathway positively regulates the polyphenol oxidase-based defense against tea geometrid caterpillars in the tea plant (Camellia sinensis)[J]. Journal of Chemical Ecology, 2020, 46(3): 308-316. [9] Yang H, Wang Y N, Li L B, et al.Transcriptomic and phytochemical analyses reveal root-mediated resource-based defense response to leaf herbivory by Ectropis oblique in tea plant (Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5465-5476. [10] Zhao X M, Chen S, Wang S S, et al.Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: a multi-omics study[J]. Frontiers in Plant Science, 2019, 10: 1705. doi.org/10.3389/fpls.2019.01705. [11] Wang X, Xiang Y, Sun M, et al.Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus sexmaculatus)[J]. BMC Plant Biology, 2023, 23(1): 638. doi: 10.1186/s12870-023-04651-8. [12] Chen L M, Shu Z F, Zhou D Y, et al.Metabolite profiling and transcriptome analyses reveal defense regulatory network against pink tea mite invasion in tea plant[J]. BMC Genomics, 2024, 25(1): 989. doi: 10.1186/s12864-024-10877-z. [13] 姚明哲, 郭华伟, 王新超, 等. 福建武夷山地区茶树种质的茶橙瘿螨抗性变异及高抗优质资源的发掘[J]. 中国农学通报, 2008, 24(9): 127-131. Yao M Z, Guo H W, Wang X C, et al.The variation of resistance to pink mite among tea germplasm and screening of high-resistant and excellent landraces from Wuyishan region in Fujian[J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 127-131. [14] 张哲, 陈青, 梁晓, 等. 朱砂叶螨为害前后抗、感木薯品种叶组织营养物质含量差异分析[J]. 热带作物学报, 2020, 41(9): 1865-1869. Zhang Z, Chen Q, Liang X, et al.Analysis on difference of nutrient content in leaf tissue of resistant and sensitive cassava varieties before and after damage to Tetranychus cinnabarinus[J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1865-1869. [15] Zhou X, Hu L, Hoang N H, et al.The changes in metabolites, quality components, and antioxidant activity of tea (Camellia sinensis) infected with Exobasidium vexans by applying UPLC-MS/MS-based widely targeted metabolome and biochemical analysis[J]. Phytopathology, 2024, 114(1): 164-176. [16] Ayoub L, Yaqoob M, Zahoor S, et al.Role of induced resistance in insect-pest management[M]//Kumar S, Furlong M. Plant resistance to insects in major field crops. Singapore: Springer Nature Singapore, 2024: 249-277. [17] 张哲. 木薯种质对朱砂叶螨的抗性鉴定及其抗性机理初步研究[D]. 海口: 海南大学, 2020. Zhang Z.Study on the defense response mechanism of cassava resistance to Tetranychus cinnabarinus [D]. Haikou: Hainan University, 2020. [18] Ling R M, Yang R Y, Li P, et al.Asatone and isoasatone a against Spodoptera litura Fab. by acting on cytochrome P450 monoxygenases and glutathione transferases[J]. Molecules, 2019, 24(21): 3940. doi: 10.3390/molecules24213940. [19] 刘保川, 陈巨莲, 倪汉祥, 等. 小麦中黄酮类化合物对麦长管蚜生长发育的影响[J]. 植物保护学报, 2003, 30(1): 8-12. Liu B C, Chen J L, Ni H X, et al.Effects of secondary flavonoids in wheat on the growth and development of Sitobion avenae (Fabricius)[J]. Journal of Plant Protection, 2003, 30(1): 8-12. [20] 王朝生, 杨刚, 董顺文, 等. 抗棉叶螨棉花种质川98系的选育[J]. 中国农业科学, 1991, 24(4): 32-40. Wang C S, Yang G, Dong S W, et la. The identification and selection of carmine spider, mite resistance in cotton stock CH 98[J]. Scientia Agricultura Sinica, 1991, 24(4): 32-40. [21] Wermelinger B, Oertli J J, Delucchi V.Effect of host plant nitrogen fertilization on the biology of the two-spotted spider mite, Tetranychus urticae[J]. Entomologia Experimentalis et Applicata, 1985, 381: 23-28. [22] 蒋科技, 皮妍, 侯嵘, 等. 植物内源茉莉酸类物质的生物合成途径及其生物学意义[J]. 植物学报, 2010, 45(2): 137-148. Jiang K J, Pi Y, Hou R, et al.Biosynthetic pathway of endogenous jasmonates in plants and its biological significance[J]. Bulletin of Botany, 2010, 45(2): 137-148. [23] Liu S A, Zhang S H, He S N, et al. Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease [J]. Horticulture Research, 2023, 10(4): uhad28. doi.org/10.1093/hr/uhad028. [24] 韦婉羚, 何文, 阮丽霞, 等. 华南205木薯二倍体及其同源四倍体对朱砂叶螨取食胁迫的生理响应[J]. 植物保护学报, 2024, 51(2): 456-466. Wei W L, He W, Ruan L X, et al.Physiological responses of cassava SC205 diploids and their autotetraploids to feeding stress by carmine spider mite Tetranychus cinnabarinus[J]. Journal of Plant Protection, 2024, 51(2): 456-466. [25] Jin S, Ren Q Q, Lian L L, et al.Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage[J]. Planta, 2020, 252(1): 10. doi.org/10.1007/s00425-020-03407-0. [26] Fan J J, Zhang X, Jiang W B, et al.Integrative transcriptome and metabolome analysis uncovers the Toxoptera aurantii (Hemiptera: Aphididae) response of two Camellia sinensis (Ericales: Theaceae) cultivars[J]. Journal of Economic Entomology, 2025: toaf044. doi: 10.1093/jee/toaf044. [27] Barah P, Bones A M.Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology[J]. Journal of Experimental Botany, 2015, 66(2): 479-493. [28] Falcone F M, Rius S P, Casati P.Flavonoids: biosynthesis, biological functions, and biotechnological applications[J]. Frontiers in Plant Science, 2012, 3: 222. doi: 10.3389/fpls.2012.00222. [29] War A R, Sharma S P, Sharma H C.Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation[J]. International Journal of Tropical Insect Science, 2016, 8: 55-64. [30] Aboshi T, Ishiguri S, Shiono Y, et al.Flavonoid glycosides in malabar spinach Basella alba inhibit the growth of Spodoptera litura larvae[J]. Bioscience Biotechnology and Biochemistry, 2018, 82(1): 9-14. [31] Goławska S, Sprawka I, Lukasik I, et al.Are naringenin and quercetin useful chemicals in pest-management strategies?[J]. Journal of Pest Science, 2014, 87(1): 173-180. [32] Li L B, Li T T, Jiang Y Y, et al.Alteration of local and systemic amino acids metabolism for the inducible defense in tea plant (Camellia sinensis) in response to leaf herbivory by Ectropis oblique[J]. Archives of Biochemistry and Biophysics, 2020, 683(15): 108301. doi: 10.1016/j.abb.2020.108301. [33] Jing T T, Du W K, Qian X N, et al.UGT89AC1-mediated quercetin glycosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding[J]. Plant Cell & Environment, 2024, 47(2): 682-697. |