[1] 毛祖法, 罗列万, 陆德彪, 等. 浙江茶叶产业转型升级基本方略研究[J]. 中国茶叶, 2010, 32(10): 6-9. Mao Z F, Luo L W, Lu D B, et al.Study on basic strategy of transformation and upgrade of tea industry of Zhejiang Province[J]. China Tea, 2010, 32(10): 6-9. [2] 胡克满, 胡海燕. 基于灰色神经网络的茶叶产量预测算法[J]. 浙江农业科学, 2019, 60(4): 577-579. Hu K M, Hu H Y.Yield prediction algorithm of tea based on grey neural network[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(4): 577-579. [3] 俞春芳. 中国茶叶生产布局特征及影响因素研究——基于全国408个茶叶生产县的调查[D]. 浙江: 浙江大学, 2018. Yu C F.Study on the Characteristics and influencing factors of China’s tea production distribution: based on the survey of 408 counties [D]. Zhejiang: Zhejiang University, 2018. [4] 张璠, 肖斌. 茶叶产量与气象因子的灰色关联度分析——以陕南茶区为例[J]. 西北农业学报, 2018, 27(5): 735-740. Zhang P, Xiao B.Grey correlation analysis between tea yield and meteorological factors: case study of tea region in southern Shaanxi[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(5): 735-740. [5] 孙智敏. 提高春茶产量的主要技术措施[J]. 福建茶叶, 2003, 25(3): 37. Sun Z M.Main technical measures to improve the yield of spring tea[J]. Tea in Fujian, 2003, 25(3): 37. [6] 朱秀红, 郑美琴, 姚文军, 等. 基于SPSS的日照市茶叶产量预测模型的建立[J]. 河南农业科学, 2010(7): 31-33. Zhu X H, Zheng M Q, Yao W J, et al.The tea yield prediction model based on SPSS statistical software in Rizhao city[J]. Journal of Henan Agricultural Sciences, 2010(7): 31-33. [7] 高洁煌. 基于GM(1,1)模型的武夷山市茶叶产量预测[J]. 科技视界, 2014(22): 21-22. Gao J H.Forecast on the tea production of Wuyishan city by GM(1,1) model[J]. Science & Technology Vision, 2014(22): 21-22. [8] 吕海侠, 赵景惠, 傅霞. 基于残差融合的ARMA-GM(1,1)模型茶叶产量预测[J]. 甘肃科学学报, 2018, 30(5): 24-28. Lv H X, Zhao J H, Fu X.Tea production prediction under ARMA-GM (1,1) model based on residual fusion[J]. Journal of Gansu Sciences, 2018, 30(5): 24-28. [9] 方孝荣, 丁希斌, 李晓丽. 基于灰色马尔柯夫链模型的浙江省名优茶产量预测[J]. 农机化研究, 2014, 36(7): 18-21. Fang X R, Ding X B, Li X L.Yield prediction of famous green tea in Zhejiang Province based on Grey-Markov chain theory[J]. Journal of Agricultural Mechanization Research, 2014, 36(7): 18-21. [10] 刘春涛, 魏明明, 郭丽娜. 气象要素对青岛崂山茶叶产量影响分析[J]. 中低纬山地气象, 2018, 42(1): 57-60. Liu C T, Wei M M, Guo L N.The effect of meteorological factors on tea yield in Laoshan[J]. Mid-Low Latitude Mountain Meteorology, 2018, 42(1): 57-60. [11] 金志凤, 黄敬峰, 李波, 等. 基于GIS及气候-土壤-地形因子的浙江省茶树栽培适宜性评价[J]. 农业工程学报, 2011, 27(3): 231-236. Jin Z F, Huang J F, Li B, et al.Suitability evaluation of tea trees cultivation based on GIS in Zhejiang Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 231-236. [12] 赵辉, 米鸿涛, 杜子璇, 等. 河南省茶树适宜种植气候区划研究[J]. 茶叶科学, 2016, 36(3): 330-336. Zhao H, Mi H T, Du Z X, et al.Study on the climate regionalization of tea plant in Henan Province[J]. Journal of Tea Science, 2016, 36(3): 330-336. [13] 阳坤, 何杰. 中国区域地面气象要素驱动数据集(1979-2018)[DS]. 国家青藏高原科学数据中心, 2019. doi: 10.11888/AtmosphericPhysics.tpe.249369.file. Yang K, He J.China meteorological forcing dataset (1979-2018) [DS]. National Tibetan Plateau Data Center, 2019. doi: 10.11888/AtmosphericPhysics.tpe.249369.file. [14] He J, Yang K, Tang W, et al.The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7: 25. doi: 10.1038/s41597-020-0369-y. [15] Yang K, He J, Tang W, et al.On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau[J]. Agricultural & Forest Meteorology, 2010, 150(1): 38-46. [16] Moniz N, Branco P, Torgo L.Evaluation of ensemble methods in imbalanced regression tasks[C]//International Workshop on Learning with Imbalanced Domains: Theory and Applications. Proceedings of Machine Learning Research 74, 2017: 129-140. [17] 孙炜. 基于代价敏感的改进AdaBoost算法在不平衡数据中的应用[D]. 广州: 暨南大学, 2018. Sun W.The application of improved adaBoost algorithm based on cost sensitive in imbalanced data [D]. Guangzhou: Jinan University, 2018. [18] Przemysław S, Krawczyk B.Influence of minority class instance types on SMOTE imbalanced data oversampling[C]//International Workshop on Learning with Imbalanced Domains: Theory and Applications. Proceedings of Machine Learning Research 74, 2017: 7-21. [19] 王来, 樊重俊, 杨云鹏, 等. 面向不平衡数据分类的KFDA-Boosting算法[J]. 计算机应用研究, 2019, 36(3): 807-811. Wang L, Fan C J, Yang Y P, et al.KFDA-Boosting algorithm oriented to imbalanced data classification[J]. Application Research of Computers, 2019, 36(3): 807-811. [20] Zhu T, Lin Y, Liu Y, et al.Minority oversampling for imbalanced ordinal regression[J]. Knowledge-Based Systems, 2019, 166: 140-155. [21] Martin F M.A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 1993, 6(4): 525-533. [22] Freund Y, Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. [23] Michael K, Leslie G V.Cryptographic limitation on learning Boolean formulae and finite automata[C]//Johnson D S. STOC'89: Proceedings of the twenty-first annual ACM symposium on Theory of computing. New York: Association for Computing Machinery, 1989: 433-444. [24] 金志凤, 封秀燕. 基于GIS的浙江省茶树栽培气候区划[J]. 茶叶, 2006, 32(1): 7-10. Jin Z F, Feng X Y.Tea plant climate division in Zhejiang Province base on GIS technology[J]. Journal of Tea, 2006, 32(1): 7-10. [25] Waldner F, Canto G S, Defourny P.Automated annual cropland mapping using knowledge-based temporal features[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 110: 1-13. [26] Zhou Y, Xiao X, Qin Y, et al.Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 46: 1-12. [27] Rajapakse R M S S, Tripathi N K, Honda K. Spectral characterization and LAI modelling for the tea (Camellia sinensis (L.) O. Kuntze) canopy[J]. International Journal of Remote Sensing, 2002, 23(18): 3569-3577. [28] 杨艳魁, 陈芸芝, 吴波, 等. 基于高分二号影像结合纹理信息的茶园提取[J]. 江苏农业科学, 2019, 47(2): 210-214. Yang Y K, Chen Y Z, Wu B, et al.Tea garden extraction based on gaofen-2 image with texture information[J]. Jiangsu Agricultural Sciences, 2019, 47(2): 210-214. [29] 朱泽润. 基于高分辨率遥感影像的茶园场景提取方法[D]. 武汉: 武汉大学, 2018. Zhu Z R.Tea garden scene extraction method based on high resolution remote sensing image [D]. Wuhan: Wuhan University, 2018. [30] 刘峻明, 和晓彤, 王鹏新, 等. 长时间序列气象数据结合随机森林法早期预测冬小麦产量[J]. 农业工程学报, 2019, 35(6): 158-166. Liu J M, He X T, Wang P X, et al.Early prediction of winter wheat yield with long time series meteorological data and random forest method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 158-166. [31] 丑洁明, 叶笃正. 构建一个经济-气候新模型评价气候变化对粮食产量的影响[J]. 气候与环境研究, 2006, 11(3): 347-353. Chou J M, Ye D Z.Assessing the effect of climate changes on grains yields with a new economy-climate model[J]. Climatic and Environmental Research, 2006, 11(3): 347-353. [32] 齐邦宇, 方成刚, 王群, 等. 基于经济-气候耦合模型的昆明冬小麦产量评估[J]. 西南农业学报, 2013, 26(6): 2241-2246. Qi B Y, Fang C G, Wang Q, et al.Study on assessing total winter-wheat yield based on an economy-climate coupling model in Kunming city[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(6): 2241-2246. |