茶叶科学 ›› 2022, Vol. 42 ›› Issue (1): 1-17.
• 综述 • 下一篇
刘亚军1,2, 王培强3, 蒋晓岚1, 庄菊花4, 高丽萍1,2,*, 夏涛1,*
收稿日期:
2021-08-11
修回日期:
2021-09-07
出版日期:
2022-02-15
发布日期:
2022-02-18
通讯作者:
*gaolp62@126.com;xiatao62@126.com
作者简介:
刘亚军,男,教授,主要从事植物酚类代谢研究,liuyajun1228@163.com。
基金资助:
LIU Yajun1,2, WANG Peiqiang3, JIANG Xiaolan1, ZHUANG Juhua4, GAO Liping1,2,*, XIA Tao1,*
Received:
2021-08-11
Revised:
2021-09-07
Online:
2022-02-15
Published:
2022-02-18
摘要: 儿茶素类化合物,主要包括单体儿茶素和聚合态儿茶素,是茶树(Camellia sinensis)多酚主要组成部分,是绿茶“茶味”决定性成分。茶树儿茶素类化合物合成与积累具有显著的组织器官特异性,鲜叶中主要积累单体儿茶素,根中以积累聚合态儿茶素为主。类黄酮代谢途径下游的无色花青素还原酶(LAR)和花青素还原酶(ANR)是决定茶树儿茶素类化合物类型的关键酶类。本文主要综述了茶树儿茶素类化合物合成、积累、转录调控研究进展,重点关注LAR、ANR以及无色花青素双加氧酶(LODX)功能和基因转录调控的最新研究进展,并对儿茶素合成途径待解决问题提出了自己的观点。
中图分类号:
刘亚军, 王培强, 蒋晓岚, 庄菊花, 高丽萍, 夏涛. 茶树单体和聚合态儿茶素生物合成的研究进展[J]. 茶叶科学, 2022, 42(1): 1-17.
LIU Yajun, WANG Peiqiang, JIANG Xiaolan, ZHUANG Juhua, GAO Liping, XIA Tao. Research Progress on the Biosynthesis of Monomeric and Polymeric Catechins in Camellia sinensis[J]. Journal of Tea Science, 2022, 42(1): 1-17.
[1] 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015. Wan X C, Xia T.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015. [2] Gu L, Kelm M, Hammerstone J F, et al.Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method[J]. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4852-4860. [3] Kennedy J A, Taylor A W.Analysis of proanthocyanidins by high-performance gel permeation chromatography[J]. Journal of Chromatography A, 2003, 995(1/2): 99-107. [4] Zhuang J H, Dai X L, Zhu M Q, et al.Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols[J]. Food Chemistry, 2020, 305: 125507. doi: 10.1016/j.foodchem.2019.125507. [5] Xia E H, Zhang H B, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877. [6] Liu Y J, Zhao G F, Li X, et al.Comparative analysis of phenolic compound metabolism among tea plants in the section [7] Jin J Q, Liu Y F, Ma C L, et al.A novel [8] Yang X R, Ye C X, Xu J K, et al.Simultaneous analysis of purine alkaloids and catechins in [9] Jin J Q, Chai Y F, Liu Y F, et al.Hongyacha, a naturally caffeine-free tea plant from Fujian, China[J]. Journal of Agricultural and Food Chemistry, 2018, 66(43): 11311-11319. [10] Jin J Q, Ma J Q, Ma C L, et al.Determination of catechin content in representative Chinese tea germplasms[J]. Journal of Agricultural and Food Chemistry, 2014, 62(39): 9436-9441. [11] Jiang X L, Liu Y J, Li W W, et al.Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [ [12] Liu Y J, Gao L P, Liu L, et al.Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant ( [13] Dai X L, Liu Y J, Zhuang J H, et al.Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins[J]. New Phytologist, 2020, 226(4): 1104-1116. [14] Jiang X L, Liu Y J, Wu Y H, et al.Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [15] Liao Y Y, Fu X M, Zhou H Y, et al.Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea ( [16] Wang X Z, Guo L N, Gao L P, et al.Molecular evidence for catechin synthesis and accumulation in tea buds ( [17] Liu Y J, Gao L P, Xia T, et al.Investigation of the site-specific accumulation of catechins in the tea plant ( [18] Stafford H A, Lester H H.Flavan-3-ol biosynthesis: the conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension cultures of douglas fir[J]. Plant Physiology, 1984, 76(1): 184-186. [19] Tanner G J, Francki K T, Abrahams S, et al.Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA[J]. Journal of Biological Chemistry, 2003, 278(34): 31647-31656. [20] Punyasiri P A N, Abeysinghe I S B, Kumar V, et al. Flavonoid biosynthesis in the tea plant [21] Pang Y, Peel G J, Wright E, et al.Early steps in proanthocyanidin biosynthesis in the model legume [22] Pang Y Z, Abeysinghe I S B, He J, et al. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering[J]. Plant Physiology, 2013, 161(3): 1103-1116. [23] Wang P Q, Zhang L J, Jiang X L, et al.Evolutionary and functional characterization of leucoanthocyanidin reductases from [24] Liu C G, Wang X Q, Shulaev V, et al.A role for leucoanthocyanidin reductase in the extension of proanthocyanidins[J]. Nature Plants, 2016, 2: 16182. doi: 10.1038/nplants.2016.182. [25] Yu K J, Jun J H, Duan C Q, et al.VvLAR1 and VvLAR2 are bifunctional enzymes for proanthocyanidin biosynthesis in grapevine[J]. Plant Physiology, 2019, 180(3): 1362-1374. [26] Zhang L J, Wang P Q, Ma X, et al.Exploration of the substrate diversity of leucoanthocyanidin reductases[J]. Journal of Agricultural and Food Chemistry, 2020, 68(13): 3903-3911. [27] Fujita A, Soma N, Goto N, et al.Anthocyanidin reductase gene expression and accumulation of flavan-3-ols in grape berry[J]. American Journal of Enology & Viticulture, 2005, 56(4): 336-342. [28] Fischer T C, Mirbeth B, Rentsch J, et al.Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry ( [29] Ghag S B, Shekhawat U K S, Ganapathi T R. Silencing of [30] Albert S, Delseny M, Devic M. [31] Xie D Y, Sharma S B, Paiva N L, et al.Role of anthocyanidin reductase, encoded by [32] Akagi T, Ikegami A, Suzuki Y, et al.Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon ( [33] Qian Y M, Zhao X Q, Zhao L, et al.Analysis of stereochemistry and biosynthesis of epicatechin in tea plants by chiral phase high performance liquid chromatography[J]. Journal of Chromatography B, 2015, 1006: 1-7. [34] Wang P Q, Liu Y J, Zhang L J, et al.Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins[J]. The Plant Journal, 2020, 101(1): 18-36. [35] Jun J H, Lu N, Docampo-Palacios M, et al. Dual activity of anthocyanidin reductase supports the dominant plant proanthocyanidin extension unit pathway [J]. Science Advances, 2021, 7(20): eabg4682. doi: 10.1126/sciadv.abg4682. [36] Saito K, Kobayashi M, Gong Z, et al.Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of [37] Abrahams S, Lee E, Walker A R, et al.The [38] Wilmouth R C, Turnbull J J, Welford R W, et al.Structure and mechanism of anthocyanidin synthase from [39] Wellmann F, Griesser M, Schwab W.Anthocyanidin synthase from [40] Jun J H, Xiao X R, Rao X L, et al.Proanthocyanidin subunit composition determined by functionally diverged dioxygenases[J]. Nature Plants, 2018, 4: 1034-1043. [41] Meraj T A, Fu J Y, Raza M A, et al.Transcriptional factors regulate plant stress responses through mediating secondary metabolism[J]. Genes, 2020, 11(4): 346. doi: 10.3390/genes11040346. [42] Deng Y X, Lu S F.Biosynthesis and regulation of phenylpropanoids in plants[J]. Critical Reviews in Plant Sciences, 2017, 36(4): 257-290. [43] Zhao L, Gao L P, Wang H X, et al.The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis[J]. Functional & Integrative Genomics, 2013, 13: 75-98. [44] Sun B M, Zhu Z S, Cao P R, et al.Purple foliage coloration in tea ( [45] Wang P Q, Ma G L, Zhang L J, et al.A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant ( [46] Jiang X L, Huang K Y, Zheng G S, et al.CsMYB5a and CsMYB5e from [47] Wang W L, Wang Y X, Li H, et al.Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [ [48] Cho W, Nam J W, Kang H J, et al.Zedoarondiol isolated from the rhizoma of [49] Stracke R, Werber M, Weisshaar B.The R2R3-MYB gene family in [50] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in [51] Bailey T L, Boden M, Buske F A, et al.MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(s2): W202-W208. [52] Xia E H, Li F D, Tong W, et al.Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant[J]. Plant Biotechnology Journal, 2019, 17(10): 1938-1953. [53] Xie G, Schepetkin I A, Quinn M T.Immunomodulatory activity of acidic polysaccharides isolated from [54] Tamagnone L, Merida A, Parr A, et al.The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco[J]. Plant Cell, 1998, 10(2): 135-154. [55] Li M Z, Li Y Z, Guo L L, et al.Functional characterization of tea ( [56] Baudry A, Heim M A, Dubreucq B, et al.TT2, TT8, and TTG1 synergistically specify the expression of [57] Liu C G, Jun J H, Dixon R A.MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in [58] Zhang W Y, Zhang Y J, Qiu H J, et al.Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties[J]. Nature Communications, 2020, 11(1): 3719. doi: 10.1038/s41467-020-17498-6. [59] Hofmann T, Glabasnia A, Schwarz B, et al.Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta- [60] Wei K, Wang L Y, Zhang Y Z, et al.A coupled role for [61] He X J, Zhao X C, Gao L P, et al.Isolation and characterization of key genes that promote flavonoid accumulation in purple-leaf tea ( [62] Manassero N G, Viola I L, Welchen E, et al.TCP transcription factors: architectures of plant form[J]. Biomolecular Concepts, 2013, 4(2): 111-127. [63] Yu S, Li P, Zhao X, et al.CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant ( [64] Shuai B, Reynaga-Pena C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family[J]. Plant Physiology, 2002, 129(2): 747-761. [65] Zhang X Y, He Y Q, He W D, et al.Structural and functional insights into the LBD family involved in abiotic stress and flavonoid synthases in [66] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of [67] Guo F, Guo Y F, Wang P, et al.Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development[J]. Planta, 2017, 246(6): 1139-1152. [68] Zhang S Y, Liu J J, Zhong G X, et al.Genome-wide identification and expression patterns of the C2H2-Zinc finger gene family related to stress responses and catechins accumulation in [69] Sun P, Cheng C Z, Lin Y L, et al.Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea ( [70] Fan K, Fan D M, Ding Z T, et al.Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant ( [71] Zheng C, Ma J Q, Ma C L, et al.Regulation of growth and flavonoid formation of tea plants ( [72] Xiang P, Wilson I W, Huang J X, et al.Co-regulation of catechins biosynthesis responses to temperature changes by shoot growth and catechin related gene expression in tea plants ( [73] Wang W Z, Zhou Y H, Wu Y L, et al.Insight into catechins metabolic pathways of [74] Liu Y J, Jiang H, Zhao Y, et al.Three [75] Suzuki T, Yamazaki N, Sada Y, et al.Tissue distribution and intracellular localization of catechins in tea leaves[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(12): 2683-2686. [76] Dixon R A, Sarnala S.Proanthocyanidin biosynthesis: a matter of protection[J]. Plant Physiology, 2020, 184(2): 579-591. |
[1] | 罗璐璐, 赵悦汐, 王彦博, 幸怡, 齐洋, 马宏炜, 程林峰, 张芳琳. 表没食子儿茶素没食子酸酯抗汉滩病毒效果研究[J]. 茶叶科学, 2025, 45(1): 145-156. |
[2] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
[3] | 丁树洽, 谢昕雅, 刘助生, 廖贤军, 刘仲华, 蔡淑娴. 茶叶成分EGCG与L-theanine联合应用的神经保护作用研究[J]. 茶叶科学, 2024, 44(5): 779-792. |
[4] | 陈佳欣, 张锦佳, 左会灵, 焦宇航, 石安华. 表没食子儿茶素没食子酸酯预防并改善非酒精性脂肪性肝病的作用机制及研究进展[J]. 茶叶科学, 2024, 44(4): 543-553. |
[5] | 雷响, 张闽峰, 林辉, 王丽丽, 郑德勇. 表儿茶素的碳酰化改性及其紫外吸收和抗氧化活性[J]. 茶叶科学, 2024, 44(3): 493-500. |
[6] | 陈一凡, 阚新意, 蒋晓岚, 高丽萍, 夏涛. 茶树单宁酶CsTA的理化性质及其在绿茶饮料中的应用[J]. 茶叶科学, 2023, 43(1): 124-134. |
[7] | 满子意, 凤怡, 吴祥庭. 儿茶素单体EGC对胰脂肪酶的抑制作用及其机理研究[J]. 茶叶科学, 2022, 42(6): 863-874. |
[8] | 俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. |
[9] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[10] | 马冰凇, 王佳菜, 徐成成, 任小盈, 马存强, 周斌星. 不同仓储期普洱茶(生茶)中酚类成分差异及其对体外抗氧化能力的影响[J]. 茶叶科学, 2022, 42(1): 51-62. |
[11] | 吴文亮, 童彤, 胡瑶, 周浩, 银霞, 张曙光. 可可茶及其优势化学成分的健康功效研究进展[J]. 茶叶科学, 2021, 41(5): 593-607. |
[12] | 高晨曦, 黄艳, 孙威江. 茶叶中原花青素研究进展[J]. 茶叶科学, 2020, 40(4): 441-453. |
[13] | 陈春晓, 楼文雨, 丁镇建, 李卓烨, 杨媛媛, 金鹏, 杜琪珍. 伐地那非增加EGCG-β-乳球蛋白纳米粒对肝癌细胞的抑制作用[J]. 茶叶科学, 2020, 40(4): 528-535. |
[14] | 徐燕, 蔡吓强, 解千金, 邰玲玲, 刘增辉. 表没食子儿茶素没食子酸酯和维生素C联用对高尿酸血症小鼠血尿酸水平的影响[J]. 茶叶科学, 2020, 40(3): 407-414. |
[15] | 方洪枫, 张慧霞, 王国红, 杨民和. 混菌发酵绿茶产脂肪酶及其对酯型儿茶素的水解作用分析[J]. 茶叶科学, 2019, 39(1): 88-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|