[1] Shen J, Wang Y, Chen C, et al.Metabolite profiling of tea (Camellia sinensis L.) leaves in winter[J]. Scientia Horticulturae, 2015, 192(12): 1-9. [2] Wu Z, Li X, Liu Z, et al.Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis)[J]. Functional & Integrative Genomics, 2015, 15(6): 741-752. [3] Wang R J, Gao X F, Yang J, et al.Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391. [4] 李慧, 熊丙全, 吴庆丽, 等. 影响茶树芽休眠的内部调控因素研究进展[J]. 南方农业, 2019, 13(23): 112-113. Li H, Xiong B Q, Wu Q L, et al.Research progress on internal regulatory factors affecting bud dormancy in tea tree[J]. Southern Agriculture, 2019, 13(23): 112-113. [5] Zeng X, Li Y, Ling H, et al.Transcriptomic analyses reveal clathrin-mediated endocytosis involved in symbiotic seed germination of Gastrodiaelata[J]. Botanical Studies, 2017, 58(1): 1-11. [6] Lee S K, Hong W, Silva J, et al.Global identification of ANTH genes involved in rice pollen germination and functional characterization of a key member, OsANTH3[J]. Frontiers in Plant Science, 2021, 12: 609473. doi: 10.3389/fpls.2021.609473. [7] Hou B, Shen Y.A Clathrin-related protein, SCD2/RRP1, participates in abscisic acid signaling in Arabidopsis[J]. Frontiers in Plant Science, 2020, 11: 892. doi: 10.3389/fpls.2020.00892. [8] Shi L, Luo Y, Wang X, et al.Molecular cloning and expression analysis of auxilin-like gene stal1 in potato (Solanum tuberosum)[J]. Russian Journal of Plant Physiology, 2021, 68(1): 56-65. [9] Adamowski M, Narasimhan M, Kania U, et al.A functional study of AUXILIN-LIKE1 and 2, two putative clathrin uncoating factors in arabidopsis[J]. The Plant Cell, 2018, 30(3): 700-716. [10] Suetsugu N, Kagawa T, Wada M.An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis[J]. Plant Physiology, 2005, 139(1): 151-162. [11] Ezaki B, Kiyohara H, Matsumoto H, et al.Overexpression of an auxilin-like gene (F9E10. 5) can suppress Al uptake in roots of Arabidopsis[J]. Journal of Experimental Botany, 2007, 58(3): 497-506. [12] 王彩芬, 刘冬成, 马晓玲, 等. 水稻耐盐基因SKC1特异性CAPS标记的开发与验证[J]. 分子植物育种, 2015, 13(11): 2437-2440. Wang C F, Liu D C, Ma X L, et al.Development and validation of a CAPS marker specific for the salt tolerance gene SKC1 in rice[J]. Molecular Plant Breeding, 2015, 13(11): 2437-2440. [13] 王军, 赵婕宇, 许扬, 等. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用[J]. 作物学报, 2018, 44(11): 1612-1620. Wang J, Zhao J Y, Xu Y, et al.Development and utilisation of functional markers for rice rice blast resistance gene Bsr-d1[J]. Journal of Crops, 2018, 44(11): 1612-1620. [14] 吴林楠, 司文洁, 郭利建, 等. 小麦粒重相关基因TaCYP78A16的克隆和CAPS标记开发[J]. 农业生物技术学报, 2018, 26(10): 1659-1669. Wu L N, Si W J, Guo L J, et al.Cloning and CAPS marker development of wheat grain weight-related gene TaCYP78A16[J]. Journal of Agricultural Biotechnology, 2018, 26(10): 1659-1669. [15] 艾子凌, 高鹏, 杜黎黎, 等. 利用CAPS初步定位甜瓜MR-1白粉病抗性基因[J]. 江苏农业科学, 2016, 44(6): 66-70. Ai Z L, Gao P, Du L L, et al.Preliminary localisation of MR-1 powdery mildew resistance gene in melon using CAPS[J]. Jiangsu Agricultural Science, 2016, 44(6): 66-70. [16] Seçgin Z, Arvas Y E, Ssendawula S P, et al.Selection of root-knot nematod resistance in inbred tomato lines using CAPS molecular markers[J]. International Journal of Life Sciences and Biotechnology, 2018, 1(1): 10-16. [17] 郝耀港, 宋建军, 李珂, 等. 与番茄灰叶斑病抗病基因Sm连锁的CAPS标记开发[J]. 中国瓜菜, 2023, 36(4): 47-55. Hao Y G, Song J J, Li K, et al.Development of CAPS markers linked to the Sm gene for grey leaf spot resistance in tomato[J]. China Cucurbit, 2023, 36(4): 47-55. [18] 陶爱芬, 游梓翊, 徐建堂, 等. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996. Tao A F, Yu Z Y, Xu J T, et al.Development and validation of CAPS markers based on SNP sites in jute transcriptome[J]. Journal of Crops, 2020, 46(7): 987-996. [19] Lopez-pardo R, Barandalla L, Ritter E, et al. Validation of molecular markers for pathogen resistance in potato[J]. Plant Breeding, 2013, 132(3): 246-251. [20] 李佳奇. 四倍体马铃薯块茎淀粉候选基因的挖掘及分子标记辅助育种[D]. 呼和浩特: 内蒙古农业大学, 2022. Li J Q.Mining of tetraploid potato tuber starch candidate genes and molecular marker-assisted breeding [D]. Huhhot: Inner Mongolia Agricultural University, 2022. [21] 张丹丹, 周延清, 杨珂. 基因特异性分子标记在植物育种中的研究进展[J]. 湖北农业科学, 2018, 57(11): 5-9. Zhang D D, Zhou Y Q, Yang K.Research progress of gene-specific molecular markers in plant breeding[J]. Hubei Agricultural Science, 2018, 57(11): 5-9. [22] 毛润锦, 王留彬, 崔懂, 等. 茶树休眠相关基因连锁SSR标记开发及萌发性状关联分析[J/OL]. 分子植物育种, 2022: 1-10[2024-03-25]. http://kns.cnki.net/kcms/detail/46.1068.S.20221101.1325.002.html. Mao R J, Wang L B, Cui D, et al. Development of SSR markers for dormancy-associated gene sequences and correlation analysis of germination traits in tea tree [J/OL]. Molecular Plant Breeding, 2022: 1-10[2024-03-25]. http://kns.cnki.net/kcms/detail/46.1068.S.20221101.1325.002.html. [23] 王新超, 王璐, 郝心愿, 等. 中国茶树遗传育种发展、创新之回顾与展望[J]. 华中农业大学学报, 2022, 41(5): 1-8. Wang X C, Wang L, Hao X Y, et al.Review and prospect of genetic breeding development and innovation of tea tree in China[J]. Journal of Huazhong Agricultural University, 2022, 41(5): 1-8. [24] Li L, Liu J J, Xue X, et al.CAPS/dCAPS Designer: a web-based high-throughput dCAPS marker design tool[J]. Science China Life Sciences, 2018, 61(8): 992-995. [25] 邢冉冉, 王佳雯, 张九凯, 等. SNP检测技术在动植物源性成分鉴定中的应用[J]. 质量安全与检验检测, 2023, 33(1): 58-63. Xing R R, Wang J W, Zhang J K, et al.Application of SNP detection technology in the identification of plant and animal source components[J]. Quality Safety and Inspection, 2023, 33(1): 58-63. [26] Wang L B, Xun H S, Aktar S, et al.Development of SNP markers for original analysis and germplasm identification in Camellia sinensis[J]. Plants, 2022, 12(1): 162. doi: 10.3390/plants12010162. [27] 张璨. 小麦抗寒性相关位点的鉴定及CAPS标记开发[D]. 合肥: 安徽农业大学, 2018. Zhang C.Identification of cold resistance related loci and development of CAPS markers in wheat [D]. Hefei: Anhui Agricultural University, 2018. [28] 王泽涵, 于文涛, 樊晓静, 等. 利用SNP标记构建漳州南部茶树种质资源的分子身份证[J]. 江苏农业科学, 2022, 50(18): 284-289. Wang Z H, Yu W T, Fan X J, et al.Construction of a molecular identity card for tea germplasm resources in southern Zhangzhou using SNP markers[J]. Jiangsu Agricultural Science, 2022, 50(18): 284-289. [29] 罗祥宗, 胡云飞, 吴淋慧, 等. 茶树叶绿体基因组SNP分子标记的初步研究[J]. 茶叶科学, 2022, 42(6): 768-778. Luo X Z, Hu Y F, Wu L H, et al.A preliminary study on SNP molecular markers in the chloroplast genome of tea[J]. Journal of Tea Science, 2022, 42(6): 768-778. [30] 顾渝娟, 郭建英, 程红梅, 等. 单核苷酸多态性的检测及应用[J]. 中国农学通报, 2007, 24(4): 38-41. Gu Y J, Guo J Y, Cheng H M, et al.Detection and application of single nucleotide polymorphisms[J]. Chinese Agronomy Bulletin, 2007, 24(4): 38-41. [31] 张成才, 王丽鸳, 韦康, 等. 基于茶树EST-SNP的CAPS标记开发[J]. 分子植物育种, 2013, 11(6): 8-11. Zhang C C, Wang L Y, Wei K, et al.Development of CAPS markers based on EST-SNP in tea tree[J]. Molecular Plant Breeding, 2013, 11(6): 8-11. [32] 刘声传, 鄢东海, 周雪, 等. 茶树CsSMT基因的单核苷酸多态性及其表达[J]. 西南农业学报, 2016, 29(8): 1793-1797. Liu S C, Yan D H, Zhou X, et al.Single nucleotide polymorphism of CsSMT gene and its expression in tea tree[J]. Southwest Journal of Agriculture, 2016, 29(8): 1793-1797. [33] 张丽群, 韦康, 王丽鸳, 等. 茶树CHS基因结构及编码区单核苷酸多态性分析[J]. 中国农业科学, 2014, 47(1): 133-144. Zhang L Q, Wei K, Wang L Y, et al.Analysis of single nucleotide polymorphisms in the structure and coding region of the CHS gene of tea tree[J]. Chinese Agricultural Science, 2014, 47(1): 133-144. [34] 刘硕谦, 叶洁连. 茶树咖啡碱合成酶基因分子变异检测及其关联分析[J]. 茶叶通讯, 2023, 50(3): 279-287. Liu S Q, Ye J L.Detection of molecular variation in caffeine synthase gene of tea tree and its association analysis[J]. Journal of Tea Communication, 2023, 50(3): 279-287. [35] An Y L, Mi X Z, Zhao S Q, et al.Revealing distinctions in genetic diversity and adaptive evolution between two varieties of Camellia sinensis by whole-genome resequencing[J]. Frontiers in Plant Science, 2020, 11: 603819. doi: 10.3389/fpls.2020.603819. [36] Fang K X, Xia Z Q, Li H J, et al.Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites[J]. Horticulture Research, 2021, 8(1): 42. doi: 10.1038/s41438-021-00477-3. [37] Lu L T, Chen H F, Wang X J, et al.Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits[J]. Horticulture Research, 2021, 8(1):190. doi: 10.1038/s41438-021-00617-9. [38] Liu Y J, Chen S, Jiang C K, et al. Combined QTL mapping, GWAS and transcriptomic analysis revealed a candidate gene associated with the timing of spring bud flush in tea plant (Camellia sinensis) [J]. Horticulture Research, 2023, 10(9): uhad149. doi: 10.1093/hr/uhad149. |