[1] Pan S Y, Nie Q, Tai H C, et al.Tea and tea drinking: China’s outstanding contributions to the mankind[J]. Chinese Medicine, 2022, 17(1): 27. doi: 10.1186/s13020-022-00571-1. [2] Chen Q C, Zhu Y, Liu Y F, et al.Black tea aroma formation during the fermentation period[J]. Food Chemistry, 2022, 374: 131640. doi:10.1016/j.foodchem.2021.131640. [3] Sanderson G W, Grahamm H N. Formation of black tea aroma[EB/OL]. American Chemical Society, 2002[2024-11-13]. https://pubs.acs.org/doi/pdf/10.1021/jf60188a007. [4] Wu Q Y, Zhou Z W, Zhang Y N, et al.Identification of key components responsible for the aromatic quality of Jinmudan black tea by means of molecular sensory science[J]. Foods, 2023, 12(9): 1794. doi: 10.3390/foods12091794. [5] 欧阳珂, 张成, 廖雪利, 等. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. Ouyang K, Zhang C, Liao X L, et al.Characterization of the key aroma in corn-scented Congou black tea manufactured from Camellia nanchuanica by sensory omics techniques[J]. Journal of Tea Science, 2022, 42(3): 397-408. [6] Sun Z C, Lin Y C, Yang H, et al.Characterization of honey-like characteristic aroma compounds in Zunyi black tea and their molecular mechanisms of interaction with olfactory receptors using molecular docking[J]. LWT, 2024, 191: 115640. doi: 10.1016/j.lwt.2023.115640. [7] Zheng F L, Gan S Y, Zhao X Y, et al.Unraveling the chemosensory attributes of Chinese black teas from different regions using GC-IMS combined with sensory analysis[J]. LWT, 2023, 184: 114988. doi:10.1016/j.lwt.2023.114988. [8] Liang Y L, Wang Z H, Zhang L Z, et al.Characterization of volatile compounds and identification of key aroma compounds of in different aroma types of Rougui Wuyi rock tea[J]. Food Chemistry, 2024: 139931. doi: 10.1016/j.foodchem.2024.139931. [9] Liu N F, Shen S S, Huang L F, et al.Revelation of volatile contributions in green teas with different aroma types by GC-MS and GC-IMS[J]. Food Research International, 2023, 169: 112845. doi: 10.1016/j.foodres.2023.112845. [10] Yang Y Q, Zhu H K, Chen J Y, et al.Characterization of the key aroma compounds in black teas with different aroma types by using gas chromatography electronic nose, gas chromatography-ion mobility spectrometry, and odor activity value analysis[J]. LWT, 2022, 163: 113492. doi: 10.1016/j.lwt.2022.113492. [11] Pinzi L, Rastelli G.Molecular docking: shifting paradigms in drug discovery[J]. International Journal of Molecular Sciences, 2019, 20(18): 4331. doi: 10.3390/ijms20184331. [12] Mei S H, Ding J, Chen X M.Identification of differential volatile and non-volatile compounds in coffee leaves prepared from different tea processing steps using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS and investigation of the binding mechanism of key phytochemicals with olfactory and taste receptors using molecular docking[J]. Food Research International, 2023, 168: 112760. doi: 10.1016/j.foodres.2023.112760. [13] Xiao Z B, Shen T Y, Ke Q F, et al.Identification of characteristic aroma compounds of Longjing tea and their molecular mechanisms of interaction with olfactory receptors using molecular docking[J]. European Food Research and Technology, 2024, 250(5): 1363-1378. [14] Zhu J C, Liu X J, Lin Y C, et al.Unraveling the characteristic chestnut aroma compounds in Meitan Cuiya green tea and their interaction mechanisms with broad-spectrum olfactory receptors using molecular docking[J]. LWT, 2024, 194: 115785. doi: 10.1016/j.lwt.2024.115785. [15] Li H H, Luo L Y, Wang J, et al.Lexicon development and quantitative descriptive analysis of Hunan Fuzhuan brick tea infusion[J]. Food Research International, 2019, 120: 275-284. [16] Wang Z H, Liang Y L, Gao C X, et al.The flavor characteristics and antioxidant capability of aged Jinhua white tea and the mechanisms of its dynamic evolution during long-term aging[J]. Food Chemistry, 2024, 436: 137705. doi: 10.1016/j.foodchem.2023.137705. [17] Wang Y J, Huang L F, Deng G J, et al.The shaking and standing processing improve the aroma quality of summer black tea[J]. Food Chemistry, 2024, 454: 139772. doi: 10.1016/j.foodchem.2024.139772. [18] Xu Y J, Liu Y Q, Yang J H, et al.Manufacturing process differences give Keemun black teas their distinctive aromas[J]. Food Chemistry: X, 2023, 19: 100865. doi: 10.1016/j.fochx.2023.100865. [19] Liao X L, Yan J N, Wang B, et al.Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1’[J]. Food Research International, 2020, 136: 109355. doi: 10.1016/j.foodres.2020.109355. [20] Huang S Y, Tao L L, Xu L L, et al.Discrepancy on the flavor compound affect the quality of Taiping Houkui tea from different production regions[J]. Food Chemistry: X, 2024, 23: 101547. doi: 10.1016/j.fochx.2024.101547. [21] Yin P, Kong Y S, Liu P P, et al.A critical review of key odorants in green tea: identification and biochemical formation pathway[J]. Trends in Food Science & Technology, 2022, 129: 221-232. [22] Zhu J C, Niu Y W, Xiao Z B.Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS)[J]. Food Chemistry, 2021, 339: 128136. doi: 10.1016/j.foodchem.2020.128136. [23] 侯智炜, 吕永铭, 马宽, 等. 不同茶树品种的径山茶挥发性成分差异研究[J]. 茶叶科学, 2024, 44(5): 747-762. Hou Z W, Lü Y M, Ma K, et al.Study on the differences in volatile components of Jingxian tea from different tea cultivars[J]. Journal of Tea Science, 2024, 44(5): 747-762. [24] Wang Z H, Liang Y L, Wu W W, et al.The effect of different drying temperatures on flavonoid glycosides in white tea: a targeted metabolomics, molecular docking, and simulated reaction study[J]. Food Research International, 2024, 190: 114634. doi: 10.1016/j.foodres.2024.114634. [25] Wang B Y, Chen H M, Qu F F, et al.Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC-MS and GC-O analysis[J]. European Food Research and Technology, 2022, 248(3): 647-657. [26] Bezman Y, Bilkis I, Winterhalter P, et al.Thermal oxidation of 9'-cis-neoxanthin in a model system containing peroxyacetic acid leads to the potent odorant β-damascenone[J]. Journal of Agricultural and Food Chemistry, 2005, 53(23): 9199-9206. [27] Zhai X T, Zhang L, Granvogl M, et al.Flavor of tea (Camellia sinensis): a review on odorants and analytical techniques[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5): 3867-3909. [28] Ma J Q, Wang Y J, Li J Y, et al.Aroma formation mechanism by the drying step during Congou black tea processing: analyses by HP-SPME and SAFE with GC-MS[J]. LWT, 2024, 198: 116019. doi: 10.1016/j.lwt.2024.116019. [29] Mahmoud M A A, Kılıç-Büyükkurt Ö, Aboul Fotouh M M, et al. Aroma active compounds of honey: analysis with GC-MS, GC-O, and molecular sensory techniques[J]. Journal of Food Composition and Analysis, 2024, 134: 106545. doi: 10.1016/j.jfca.2024.106545. [30] Wang X Q, Zeng L T, Liao Y Y, et al.An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves[J]. Food Chemistry, 2019, 270: 17-24. [31] Costa A C, Garruti D S, Madruga M S.The power of odour volatiles from unifloral melipona honey evaluated by gas chromatography-olfactometry osme techniques[J]. Journal of the Science of Food and Agriculture, 2019, 99(9): 4493-4497. [32] Duru M E, Taş M, Çayan F, et al.Characterization of volatile compounds of Turkish pine honeys from different regions and classification with chemometric studies[J]. European Food Research and Technology, 2021, 247(10): 2533-2544. [33] Shao C Y, Zhang Y, Lü H P, et al.Aromatic profiles and enantiomeric distributions of chiral odorants in baked green teas with different picking tenderness[J]. Food Chemistry, 2022, 388: 132969. doi: 10.1016/j.foodchem.2022.132969. [34] Demyttenaere J C R, Willemen H M. Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger[J]. Phytochemistry, 1998, 47(6): 1029-1036. [35] Makowicz E, Jasicka-Misiak I, Teper D, et al.Botanical origin authentication of polish phacelia honey using the combination of volatile fraction profiling by HS-SPME and lipophilic fraction profiling by HPTLC[J]. Chromatographia, 2019, 82(10): 1541-1553. [36] Jerković I, Kuś P M.Headspace solid-phase microextraction and ultrasonic extraction with the solvent sequences in chemical profiling of Allium ursinum L. honey[J]. Molecules, 2017, 22(11): 1909. doi: 10.3390/molecules22111909. [37] Pattamayutanon P, Angeli S, Thakeow P, et al.Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species[J]. PLoS ONE, 2017, 12(2): e0172099. doi: 10.1371/journal.pone.0172099. [38] Wang Q W, Xie J L, Wang L L, et al.Comprehensive investigation on the dynamic changes of volatile metabolites in fresh scent green tea during processing by GC-E-Nose, GC-MS, and GC × GC-TOFMS[J]. Food Research International, 2024, 187: 114330. doi: 10.1016/j.foodres.2024.114330. [39] Wang J T, Zhu Y, Shi J, et al.Discrimination and identification of aroma profiles and characterized odorants in citrus blend black tea with different citrus species[J]. Molecules, 2020, 25(18): 4208. doi: 10.3390/molecules25184208. [40] Wu Z R, Jiao Y F, Jiang X F, et al.Effects of sun withering degree on black tea quality revealed via non-targeted metabolomics[J]. Foods, 2023, 12(12): 2430. doi: 10.3390/foods12122430. [41] Deng H L, Chen S S, Zhou Z W, et al.Transcriptome analysis reveals the effect of short-term sunlight on aroma metabolism in postharvest leaves of oolong tea (Camellia sinensis)[J]. Food Research International, 2020, 137: 109347. doi: 10.1016/j.foodres.2020.109347. [42] Huang W J, Fang S M, Wang J, et al.Sensomics analysis of the effect of the withering method on the aroma components of Keemun black tea[J]. Food Chemistry, 2022, 395: 133549. doi: 10.1016/j.foodchem.2022.133549. [43] Duan Y, Yu M G, Raza J, et al.Effect of roasting time on aroma quality of Shuixian Wuyi Rock Tea (Camellia sinensis)[J]. Journal of Food Composition and Analysis, 2024, 135: 106662. doi: 10.1016/j.jfca.2024.106662. [44] Wang D L, Liu Z B, Lan X Y, et al.Unveiling the aromatic intricacies of Wuyi rock tea: a comparative study on sensory attributes and odor-active compounds of Rougui and Shuixian varieties[J]. Food Chemistry, 2024, 435: 137470. doi: 10.1016/j.foodchem.2023.137470. [45] Wang J, Li M R, Wang H, et al.Decoding the specific roasty aroma Wuyi rock tea (Camellia sinensis: Dahongpao) by the sensomics approach[J]. Journal of Agricultural and Food Chemistry, 2022, 70(34): 10571-10583. [46] Li X, Zhang L P, Zhang L, et al.Methyl salicylate enhances flavonoid biosynthesis in tea leaves by stimulating the phenylpropanoid pathway[J]. Molecules, 2019, 24(2): 362. doi: 10.3390/molecules24020362. [47] Kang S Y, Yan H, Zhu Y, et al.Identification and quantification of key odorants in the world’s four most famous black teas[J]. Food Research International, 2019, 121: 73-83. [48] Zhang D, Huang Y J, Fan X, et al.Effects of solid-state fermentation with Aspergillus cristatus (MK346334) on the dynamics changes in the chemical and flavor profile of dark tea by HS-SPME-GC-MS, HS-GC-IMS and electronic nose[J]. Food Chemistry, 2024, 455: 139864. doi: 10.1016/j.foodchem.2024.139864. [49] Xiao Z B, Shen T Y, Niu Y W, et al.Unraveling the characteristic aroma compounds in Longjing tea and their interaction mechanisms with s-curve and broad-spectrum olfactory receptors using molecular docking[J]. Food Bioscience, 2024, 60: 104423. doi: 10.1016/j.fbio.2024. 104423. [50] Zhu J C, Chen Y Q, Liu X J, et al.Exploring the molecular mechanism of the interaction between characteristic aroma compounds in Longjing tea using a combination of sensory and theoretical perspectives: with a focus on linalool and methyl jasmonate on olfactory receptor of OR52D1[J]. Industrial Crops and Products, 2025, 224: 120314. doi: 10.1016/j.indcrop.2024.120314. [51] Zeng S T, Zhang L L, Li P, et al.Molecular mechanisms of caramel-like odorant-olfactory receptor interactions based on a computational chemistry approach[J]. Food Research International, 2023, 171: 113063. doi: 10.1016/j.foodres.2023.113063. |