[1] 曾棋平, 杨丽娜, 吴坤林, 等. 紫茶多酚含量测定及其抗氧化活性研究[J]. 药学服务与研究, 2021, 21(3): 230-233. Zeng Q P, Yang L N, Wu K L, et al.Determination of polyphenols in purple tea and study on its antioxidant activity[J]. Pharmaceutical Care and Research, 2021, 21(3): 230-233. [2] Gao X, Ho C T, Li X F, et al.Phytochemicals, anti-inflammatory, antiproliferative, and methylglyoxal trapping properties of Zijuan tea[J]. Journal of Food Science, 2018, 83(2): 517-524. [3] Guo Q, Yuan J Y, Ding S Q, et al.Microbial fermentation in fermented tea beverages: transforming flavor and enhancing bioactivity[J]. Beverage Plant Research, 2024, 4: e029. doi: 10.48130/bpr-0024-0026. [4] Lin C C, Hsu C P, Chen C C, et al.Anti-proliferation and radiation sensitizing effect of an anthocyanidin rich extract from purple shoot tea on colon cancer cells[J]. Journal of Food Drug Analysis, 2012, 20(4): 328-331. [5] Anita K, Varun K, Rinat O, et al.Phenylalanine in motion: a tale of an essential molecule with many faces[J]. Biotechnology Advances, 2023, 68: 108246. doi: 10.1016/j.biotechadv.2023.108246. [6] Fan Y G, Zhao T T, Xiang Q Z, et al.Multi-omics research accelerates the clarification of the formation mechanism and the influence of leaf color variation in tea (Camellia sinensis) plants[J]. Plants, 2024, 13: 426. doi: 10.3390/plants13030426. [7] Wilmouth R C, Turnbull J J, Welford R W, et al.Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana[J]. Structure, 2002, 10(1): 93-103. [8] 李小兰, 张明生, 吕享. 植物花青素合成酶ANS基因的研究进展[J]. 植物生理学报, 2016, 52(6): 817-827. Li X L, Zhang M S, Lü X.The research progress on plant anthocyanin synthetase ANS gene[J]. Plant Physiology Journal, 2016, 52(6): 817-827. [9] 杨慧珍. 甘薯花青素合成酶(ANS)基因的克隆及其组织表达模式分析[J]. 山西农业科学, 2020, 48(11): 1718-1723. Yang H Z.Cloning of the ANS gene and analysis of lts tissue expression in Ipomoea batatas[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(11): 1718-1723. [10] 平怀磊, 郭雪, 余潇, 等. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. Ping H L, Guo X, Yu X, et al.Cloning and expression of PdANS in Paeonia delavayi and correlation with anthocyanin content[J]. Biotechnology Bulletin, 2023, 39(3): 206-217. [11] 苏俏, 金欣欣, 李玉荣, 等. 影响多彩花生种皮颜色的关键代谢物及ANS基因分析[J]. 华北农学报, 2022, 37(s1): 19-25. Su Q, Jin X X, Li Y R, et al.Analysis of key metabolites and ANS genes affecting seed testa color of peanut[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(s1): 19-25. [12] 尹鑫, 管仁伟, 张翠翠, 等. 三种花色黄芩花青素合成酶基因(ANS)的克隆及表达分析[J]. 山东农业科学, 2025, 57(3): 19-26. Yin X, Guan R W, Zhang C C, et al.Cloning and expression analysis of ANS gene in three flower colors of Scutellaria baicalensis[J]. Shandong Agricultural Sciences, 2025, 57(3): 19-26. [13] Giampieri F, Gasparrini M, Forbes-Hernandez T Y, et al. Overexpression of the anthocyanidin synthase gene in strawberry enhances antioxidant capacity and cytotoxic effects on human Hepatic cancer cells[J]. Journal of Agricultural and Food Chemistry, 2018, 66(3): 581-592. [14] Li H Y, Liu J L, Pei T L, et al.Overexpression of SmANS enhances anthocyanin accumulation and alters phenolic acids content in Salvia miltiorrhiza and Salvia miltiorrhiza Bge f. alba plantlets[J]. International Journal of Molecular Sciences, 2019, 20(9): 2225. doi: 10.3390/ijms20092225. [15] Tao R, Ma J J, Qian J L, et al.Differential methylation of a retrotransposon upstream of a MYB gene causes variegation of lettuce leaves, which is abolished by the presence of an (AT)5 repeat in the promoter[J]. The Plant Journal, 2025, 122(1): e70123. doi: 10.1111/tpj.70123. [16] Zhang H L, Zhao X J, Zhang J P, et al.Functional analysis of an anthocyanin synthase gene StANS in potato[J]. Scientia Horticulturae, 2020, 272: 109569. doi: 10.1016/j.scienta.2020.109569. [17] 齐勇, 赵德刚, 吕立堂. 茶树CsANS基因的克隆及在转基因烟草中的功能分析[J]. 农业生物技术学报, 2019, 27(4): 636-644. Qi Y, Zhao D G, Lü L T.Cloning of CsANS Gene from tea plant (Camellia sinensis) and lts functional analysis in transgenic tobacco (Nicotiana tabacum)[J]. Journal of Agricultural Biotechnology, 2019, 27(4): 636-644. [18] 张芷苓, 张媛媛, 林晓蓉, 等. 茶儿茶素合成关键酶基因CsANS和CsLAR的功能鉴定[J]. 园艺学报, 2024, 51(4): 804-814. Zhang Z L, Zhang Y Y, Lin X R, et al.Functional characterization of key genes CsANS and CsLAR involved in catechin biosynthesis in Camellia sinensis[J]. Acta Horticulturae Sinica, 2024, 51(4): 804-814. [19] 王丽鸳, 赵容波, 成浩, 等. 叶色特异茶树品种选育现状[J]. 中国茶叶, 2020, 42(1): 15-19. Wang L Y, Zhao R B, Cheng H, et al.Current situation on breeding of tea cultivars with special leaf colors[J]. China Tea, 2020, 42(1): 15-19. [20] 孟凡月, 陈子易, 王域, 等. 多组学分析不同叶色茶树品种叶绿素代谢途径[J/OL]. 分子植物育种, 2025: 1-12[2025-09-08]. https://link.cnki.net/urlid/46.1068.S.20240305.1556.008. Meng F Y, Chen Z Y, Wang Y, et al. Multi-omics analysis of chlorophyll metabolic pathways in tea tree varieties with different leaf colors [J/OL]. Molecular Plant Breeding, 2025: 1-12[2025-09-08]. https://link.cnki.net/urlid/46.1068.S.20240305.1556.008. [21] Chen C C, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. [22] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408. [23] Xia E H, Li F D, Tong W, et al.Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant[J]. Plant Biotechnology Journal, 2019, 17(10): 1938-1953. [24] Kumar S, Stecher G,Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. [25] Solfanelli C, Poggi A, Loreti E, et al.Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiology, 2006, 140(2): 637-646. [26] Hu D G, Sun C H, Ma Q J, et al.MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J]. Plant Physiology, 2016, 170(3): 1315-1330. [27] Yuan S G, Chan H C, Filipek S, et al.PyMOL and inkscape bridge the data and the data visualization[J]. Structure, 2016, 24(12): 2041-2042. [28] Ahn J H, Kim J S, Kim S, et al.De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in Zoysia grass (Zoysia japonica Steud.)[J]. PLoS One, 2015, 10(4): e0124497. doi: 10.1371/journal.pone.0124497. [29] Dare A P, Schaffer R J, Kui L W, et al.Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes[J]. Plant Methods, 2008, 4: 17. doi: 10.1186/1746-4811-4-17. [30] Sun B M, Zhu Z S, Cao P R, et al.Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1[J]. Scientific Reports, 2016, 6: 32534. doi: 10.1038/srep32534. [31] Tan L Q, Zhang P, Cui D, et al.Multi-omics analysis revealed anthocyanin accumulation differences in purple tea plants ‘Ziyan', ‘Zijuan' and their dark-purple hybrid[J]. Scientia Horticulturae, 2023, 321(1): 112275. doi: 10.1016/j.scienta.2023.112275. [32] 蒋会兵, 孙云南, 李梅, 等. 紫娟茶树叶片不同发育期花青素积累及合成相关基因的表达[J]. 茶叶科学, 2018, 38(2): 174-182. Jiang H B, Sun Y N, Li M, et al.Anthocyanin accumulation and expression of synthesis-related genes in leaves of different developmental stages in Camellia sinensis cv. Zijuan[J]. Journal of Tea Science, 2018, 38(2): 174-182. [33] Zhao X C, Li P, Zuo H, et al.CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis)[J]. Plant Journal, 2023, 115(4): 1051-1070. [34] Chen S, Wang P J, Kong W L, et al.Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis[J]. Nature Plants, 2023, 9(12): 1986-1999. [35] Wang Y Q, Jin J Q, Zhang R, et al. Association analysis of BSA-seq, BSR-seq,RNA-seq reveals key genes involved in purple leaf formation in a tea population (Camellia sinensis) [J]. Horticulture Research, 2024, 11(9): uhae191. doi: 10.1093/hr/uhae191. [36] Xie H, Zhu J Y, Wang H, et al.An enhancer transposable element from the genome of purple leaf tea variety reveals a genetic mechanism turning leaves from evergreen to purple color[J]. Plant Communications, 2024, 6(2): 10. doi:10.1016/j.xplc.2024.101176. [37] Jiang H F, Shi Y T, Liu J Y, et al.Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize[J]. Nature Plants, 2022, 8(10): 1176-1190. [38] Li Z Y, Fu D Y, Wang X, et al.The transcription factor bZIP68 negatively regulates cold tolerance in maize[J]. Plant Cell, 2022, 34(8): 2833-2851. [39] Chen G Q, Xu P B, Pan J, et al.Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit[J]. Plant Science, 2020, 298: 110578. doi: 10.1016/j.plantsci.2020.110578. [40] Gao R F, Li Y Q, Shan X T, et al.A single nucleotide polymorphism affects protein translation and leads to post-anthesis color change variation in closely related Lotus species[J]. Plant Journal, 2025, 121(1): e17188. doi: 10.1111/tpj.17188. [41] Huang Y H, Liu L Q, Yi D B, et al.DlMYB113 mutation affects anthocyanin accumulation in red pericarp longan (Dimocarpus longan Lour.)[J]. Horticulture Advances, 2023, 1: 11. doi: 10.1007/s44281-023-00014-3. [42] Sun Y, Li H, Huang J R.Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts[J]. Molecule Plant, 2012, 5(2): 387-400. [43] Wei K, Wang L Y, Zhang C C, et al.Transcriptome analysis reveals key flavonoid 3'-Hydroxylase and flavonoid 3',5'-hydroxylase genes in affecting the ratio of dihydroxylated to trihydroxylated catechins in Camellia sinensis[J]. PLoS One, 2015, 10(9): e0137925. doi: 10.1371/journal.pone.0137925. [44] Zhang X L, Liu Y J, Gao K J, et al.Characterization of anthocyanidin reductase from Shuchazao green tea[J]. Journal of the Science of Food and Agriculture, 2012, 92(7): 1533-1539. [45] 苏全胜, 王爽, 孙玉强, 等. 植物原花青素生物合成及调控研究进展[J]. 中国细胞生物学学报, 2021, 43(1): 219-229. Su Q S, Wang S, Sun Y Q, et al.Advances in biosynthesis and regulation of plant proanthocyanidins[J]. Chinese Journal of Cell Biology, 2021, 43(1): 219-229. [46] Zhang Y R, Pan H Y, Wu Q, et al.Natural variation in promoters of F3'5'H and ANS correlates with catechins diversification in Thea species of genus Camellia[J]. Plant Journal, 2025, 121(6): e70108. doi: 10.1111/tpj.70108. |