Journal of Tea Science ›› 2025, Vol. 45 ›› Issue (5): 879-897.
• Research Paper • Previous Articles Next Articles
LI Bing1,2, ZHU Yong1, XIA Chenglong1, LI Feilong1, CAI Zhenyang1, WU Hao1
Received:
2025-01-17
Revised:
2025-02-27
Online:
2025-10-15
Published:
2025-10-17
CLC Number:
LI Bing, ZHU Yong, XIA Chenglong, LI Feilong, CAI Zhenyang, WU Hao. Lightweight Online Sorting Method of Milled Tea Based on Improved YOLOv5s[J]. Journal of Tea Science, 2025, 45(5): 879-897.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Patrício I D, Rieder R.Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review[J]. Computers and Electronics in Agriculture, 2018, 153: 69-81. doi: 10.1016/j.compag.2018.08.001. [2] Momin A M, Yamamoto K, Miyamoto M, et al.Machine vision based soybean quality evaluation[J]. Computers and Electronics in Agriculture, 2017, 140: 452-460. doi: 10.1016/j.compag.2017.06.023. [3] Wang F Y, Zheng J Y, Tian X C, et al.An automatic sorting system for fresh white button mushrooms based on image processing[J]. Computers and Electronics in Agriculture, 2018, 151: 416-425. doi: 10.1016/j.compag.2018.06.022. [4] Maganda N A M, Rodríguez D A I, Mier H Y, et al. Real-time embedded vision system for online monitoring and sorting of citrus fruits[J]. Electronics, 2023, 12(18): 3891. doi: 10.3390/electronics12183891. [5] Gan N, Wang Y J, Ren G X, et al.Design and testing of a machine-vision-based air-blow sorting platform for famous tea fresh leaves production[J]. Computers and Electronics in Agriculture, 2023, 214: 108334. doi: 10.1016/j.compag.2023.108334. [6] 吴江春, 王虎虎, 徐幸莲. 基于机器视觉的鸡胴体断翅快速检测技术[J]. 农业工程学报, 2022, 38(22): 253-261. Wu C J, Wang H H, Xu X L.Rapid detection technology for broken-winged broiler carcass based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(22): 253-261. [7] 左杰文, 彭彦昆, 李永玉, 等. 基于声学特性的西瓜糖度检测与分级系统研究[J]. 农业机械学报, 2022, 53(s1): 316-323. Zuo J W, Peng Y K, Li Y Y, et al.Watermelon sugar content detection and grading system based on acoustic characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(s1): 316-323. [8] 吕壮, 黄金, 兰梓溶, 等. 机器学习算法在食用植物油掺伪鉴别中的研究进展[J/OL]. 中国油脂, 2024: 1-12[2025-01-17]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.240160. Lü Z, Huang J, Lan Z R, et al. Research progress of machine learning algorithm in adulteration identification of edible vegetable oil [J/OL]. China Oils and Fats, 2024: 1-12[2025-01-17]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.240160. [9] Huang K Y, Cheng J F.A novel auto-sorting system for Chinese cabbage seeds[J]. Sensors, 2017, 17(4): 886. doi: 10.3390/s17040886. [10] Rezaei P, Hemmat A, Shahpari N, et al.Machine vision-based algorithms to detect sunburn pomegranate for use in a sorting machine[J]. Measurement, 2024, 232: 114682. doi: 10.1016/j.measurement.2024.114682. [11] Blasco J, Cubero S, Gómez-sanchís J, et al. Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision[J]. Journal of Food Engineering, 2008, 90(1): 27-34. [12] Tala T K, Hadjar O S, Naima K.Deep learning: systematic review, models, challenges, and research directions[J]. Neural Computing & Applications, 2023: 35(31): 23103-23124. [13] Gao X H W, Hui R, Tian Z M. Classification of CT brain images based on deep learning networks[J]. Computer Methods and Programs in Biomedicine, 2017, 138: 49-56. [14] Lee S H, Chan C S, Mayo S J, et al.How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 2017, 71: 1-13. doi: 10.1016/j.patcog.2017.05.015. [15] Yang Z H, Xu J C, Yang L, et al.Optimized dynamic monitoring and quality management system for post-harvest matsutake of different preservation packaging in cold chain[J]. Foods, 2022, 11(17): 26-46. [16] Xu J C, Yang Z H, Wang Z, et al.Flexible sensing enabled packaging performance optimization system (FS-PPOS) for lamb loss reduction control in E-commerce supply chain[J]. Food Control, 2023, 145: 109394. doi: 10.1016/j.foodcont.2022.109394. [17] Zhang H Y, Zuo X Y, Sun B Y, et al.Fuzzy-PID-based atmosphere packaging gas distribution system for fresh food[J]. Applied Sciences, 2023, 13(4): 2674. doi: 10.3390/app13042674. [18] Fu L S, Majeed Y, Zhang X, et al.Faster R-CNN-based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting[J]. Biosystems Engineering, 2020, 197: 245-256. doi: 10.1016/j.biosystemseng.2020.07.007. [19] Fan S X, Li J B, Zhang Y H, et al.On line detection of defective apples using computer vision system combined with deep learning methods[J]. Journal of Food Engineering, 2020, 286: 110102. doi: 10.1016/j.jfoodeng.2020.110102. [20] Subramanian P, Sankar S T.Detection of maturity stages of coconuts in complex background using Faster R-CNN model[J]. Biosystems Engineering, 2021, 202: 119-132. doi: 10.1016/j.biosystemseng.2020.12.002. [21] Jahanbakhshi A, Momeny M, Mahmoudi M, et al.Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks[J]. Energy Reports, 2021, 7: 5248-5256. doi: 10.1016/j.egyr.2021.08.028. [22] Wan S H, Goudos S.Faster R-CNN for multi-class fruit detection using a robotic vision system[J]. Computer Networks, 2020, 168: 107036. doi: 10.1016/j.comnet.2019.107036. [23] Lu Z H, Zhao M F, Luo J, et al.Design of a winter-jujube grading robot based on machine vision[J]. Computers and Electronics in Agriculture, 2021, 186: 106170. doi: 10.1016/j.compag.2021.106170. [24] Lu A G, Guo R X, Ma Q C, et al.Online sorting of drilled lotus seeds using deep learning[J]. Biosystems Engineering, 2022, 221: 118-137. doi: 10.1016/j.biosystemseng.2022.06.015. [25] Wen J, He J.Agricultural development driven by the digital economy: improved EfficientNet vegetable quality grading[J]. Frontiers in Sustainable Food Systems, 2024, 8: 1310042. doi: 10.3389/fsufs.2024.1310042. [26] 杨肖委, 沈强, 罗金龙, 等. 基于改进YOLOv8n的茶树嫩芽识别[J]. 茶叶科学, 2024, 44(6): 949-959. Yang X W, Shen Q, Luo J L, et al.Research on tea bud recognition based on improved YOLOv8n[J]. Journal of Tea Science, 2024, 44(6): 949-959. [27] Wang H Q, Guo X X, Zhang S H, et al.Detection and recognition of foreign objects in Pu-erh sun-dried green tea using an improved YOLOv8 based on deep learning[J]. PloS One, 2025, 20(1): e0312112. doi: 10.1371/journal.pone.0312112. [28] Tian Y N, Yang G D, Wang Z, et al.Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426. doi: 10.1016/j.compag.2019.01.012. [29] 闫彬, 樊攀, 王美茸, 等. 基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报, 2022, 53(9): 28-38, 59. Yan B, Fan P, Wang M R, et al.Real-time apple picking pattern recognition for picking robot based on improved YOLOv5m[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 28-38, 59. [30] 赵露强, 彭强吉, 兰玉彬, 等. CottonBud-YOLOv5s轻量型棉花顶芽检测算法[J]. 农业工程学报, 2025, 41(4): 175-184. Zhao L Q, Peng Q J, Lan Y B, et al.CottonBud-YOLOv5s lightweight cotton bud detection algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(4): 175-184. [31] 白强, 高荣华, 赵春江, 等. 基于改进YOLOV5s网络的奶牛多尺度行为识别方法[J]. 农业工程学报, 2022, 38(12): 163-172. Bai Q, Gao R H, Zhao C J, et al.Multi-scale behavior recognition method for dairy cows based on improved YOLOV5s network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 163-172. [32] 尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学报, 2022, 38(9): 222-229. Shang Y Y, Zhang Q R, Song H B.Application of deep learning using YOLOv5s to apple flower detection in natural scenes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229. [33] Tan M X, Le Q V.EfficientNet: rethinking model scaling for convolutional neural networks[J]. International Conference on Machine Learning, 2019, arXiv: 1905.11946. doi: 10.48550/arXiv.1905.11946. [34] Ren F, Fei J J, Li H S, et al.Steel surface defect detection using improved deep learning algorithm: ECA-SimSPPF-SIoU-Yolov5[J]. IEEE Access, 2024, 12: 32545-32553. doi: 10.1109/ACCESS.2024.3371584. [35] Lu S J, Chen W K, Zhang X, et al.Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture, 2024, 193: 106696. doi: 10.1016/j.compag.2022.106696. [36] Zhang X C, Wu Z M, Cao C M, et al.Design and operation of a deep-learning-based fresh tea-leaf sorting robot[J]. Computers and Electronics in Agriculture, 2023, 206: 107664. doi: 10.1016/j.compag.2023.107664. [37] Mazzia V, Khaliq A, Salvetti F, et al.Real-time apple detection system using embedded systems with hardware accelerators: an edge AI application[J]. IEEE Access, 2020, 8: 9102-9114. doi: 10.1109/ACCESS.2020.2964608. [38] Wu D H, Lü S H, Mei J, et al.Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: 105742. doi: 10.1016/j.compag.2020.105742. |
[1] | TANG Haikun, ZHANG Lanjun, ZHANG Panpan, LIU Benying. Research Progress on Chemical Constituents and Biological Activities of Alkaloids in Tea [J]. Journal of Tea Science, 2025, 45(5): 727-741. |
[2] | LI Guinan, YANG Ni, LUO Wei, ZHANG Jiaqi, HU Zhihang, XIONG Aisheng, HAO Jiannan, ZHUANG Jing. Identification of CsDET2 and Its Response Analysis to Photoperiod and Abiotic Stress in Camellia sinensis [J]. Journal of Tea Science, 2025, 45(5): 742-756. |
[3] | FAN Yangen, XIAO Yue, MENG Fanyue, LIU Wenjie, ZHANG Ying, SUN Ping, ZHANG Lixia, REN Lijun. Cloning and Functional Analysis of the Anthocyanin Synthase Gene CsANS1 in the Purple Bud Tea Variety ‘Zijuan' [J]. Journal of Tea Science, 2025, 45(5): 757-769. |
[4] | TU Yiyi, ZHANG You, XU Ting, CHEN Junjie, WANG Yuchun, LÜ Wuyun. Loop-mediated Isothermal Amplification-based Detection of Colletotrichum camelliae [J]. Journal of Tea Science, 2025, 45(5): 770-782. |
[5] | JIANG Li, LI Duojiao, HU Xinrong, SHEN Yingzi, ZHENG Zhaisheng, WENG Xiaoxing, LIU Shujing, BIAN Xiaodong, YUAN Ming'an, CHEN Xuan. Effects of Different Cultivation Patterns on Physiological and Biochemcial Characteristics of New Shoots in Seed-Leaf Dual-Purpose Tea Plants [J]. Journal of Tea Science, 2025, 45(5): 783-794. |
[6] | WANG Kairong, ZHANG Longjie, LIANG Yuerong, LI Xiaoxiang, ZHENG Xinqiang. Identification and Classification of Tea Leaf Color and Establishment of A Tea Leaf Color System [J]. Journal of Tea Science, 2025, 45(5): 795-807. |
[7] | LI Jing, HU Xinlong, TANG Huishan, GUO Jinling, HU Guangcan, FENG Depin, QIU Fangfang, WANG Mingle. Integrated Sensory Evaluation and Metabolomics Analysis of the Quality Characteristics of Yihong Black Tea with Different Levels of Tenderness [J]. Journal of Tea Science, 2025, 45(5): 808-820. |
[8] | GUO Yu, XIAO Liuyu, DU Qiuyi, TIAN Ye, HAN Yu. Study on Comprehensive Optimization of the Extraction Process and Emulsion Loading System of Water-extracted Polysaccharides from Qingzhuan Tea and Alkali-extracted Polysaccharides from Tea Residue [J]. Journal of Tea Science, 2025, 45(5): 821-840. |
[9] | SU Lin, HUANG Zihao, SUN Dan, CHEN Jinhua, ZHENG Yajie, LU Ying. Study on the Hypoglycemic Effects of Major Compounds in White Tea Based on Network Pharmacology and Zebrafish Model [J]. Journal of Tea Science, 2025, 45(5): 841-851. |
[10] | WANG Yonghui, WANG Duofeng, LI Xuemin, SHI Tianbin, WU Lidong, LIU Zaiguo, ZHANG Guangzhong, ZHAO Fengyun. Study on the Physicochemical Components and in Vitro Antioxidant Differences of Green Tea from Longnan, Gansu and Jinhua, Zhejiang [J]. Journal of Tea Science, 2025, 45(5): 852-864. |
[11] | CHEN Junrui, HU Junming, SHI Yuanzhi, WEI Xianghua, SONG Chuankui, ZHANG Junhui, ZHENG Fuhai, SUO Guangli. The Effects of Biochar-based Fertilizer on the Physical Stability of Organic Carbon in Soil Aggregates of Tea Gardens [J]. Journal of Tea Science, 2025, 45(5): 865-878. |
[12] | MENG Chao, LIANG Tao, ZHANG Xia, WANG Wanhong, DONG Huanglin, LI Ming. Research on Tea Light Complementary Mode Based on Tea Planting and Photovoltaic Power Generation [J]. Journal of Tea Science, 2025, 45(5): 898-908. |
[13] | ZHOU Yide, CHEN Jialin, WU Junmei, ZHAO Hongbo, SUN Binmei, LIU Shaoqun, ZHENG Peng. Nitrogen Metabolism Genes in Tea Plant: Research Progress on the Environmental Stress Adaptation Mechanism and Breeding Application [J]. Journal of Tea Science, 2025, 45(4): 545-558. |
[14] | SUN Mengzhen, HU Zhihang, YANG Kaixin, ZHANG Jiaqi, ZHANG Nan, XIONG Aisheng, LIU Hui, ZHUANG Jing. Identification of Circadian Clock CsLUX Gene and Its Effects on Photosynthetic Characteristics in Tea Plants [J]. Journal of Tea Science, 2025, 45(4): 559-570. |
[15] | YAN Huiting, WANG Yanyan, LU Jianwei, RAO Zilei, LI Yuanyuan, CHANG Runrun, ZHAO Hongyan, YANG Juncong, ZHANG Lilan, BAI Bapu, LU Liping, BAI Bing, WANG Baijuan, GAO Jun, LIU Zhiwei. Analysis of Leaf Structure and Biochemical Quality Components of ‘Mayu’ Tea Germplasm Resources [J]. Journal of Tea Science, 2025, 45(4): 571-586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|