






Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (1): 16-26.doi: 10.13305/j.cnki.jts.2024.01.010
• Review • Previous Articles Next Articles
WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan*
Received:2023-09-12
Revised:2023-11-29
Online:2024-02-25
Published:2024-03-13
CLC Number:
WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan. Research Progress on the Mechanism of Natural Tea Components in Alleviating Acne[J]. Journal of Tea Science, 2024, 44(1): 16-26.
| [1] Ahammed G J, Li X.Hormonal regulation of health-promoting compounds in tea ( [2] Rha C S, Jeong H W, Park S, et al.Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea[J]. Antioxidants, 2019, 8(8): 278. doi: 10.3390/antiox8080278. [3] Liao Z L, Zeng B H, Wang W, et al.Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal [4] Guo J, Li K, Lin Y J, et al.Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases[J]. Frontiers in Nutrition, 2023, 10: 1202378. doi: 10.3389/fnut.2023.1202378. [5] Zhao T T, Li C, Wang S, et al.Green tea ( [6] Woo Y R, Kim H S.Truncal acne: an overview[J]. Journal of Clinical Medicine, 2022, 11(13): 3660. doi: 10.3390/jcm11133660. [7] Kim S, Park T H, Kim W I, et al.The effects of green tea on acne vulgaris: a systematic review and meta-analysis of randomized clinical trials[J]. Phytotherapy Research, 2021, 35(1): 374-383. [8] Kalaaji A N, Wahner-Roedler D L, Sood A, et al. Use of complementary and alternative medicine by patients seen at the dermatology department of a tertiary care center[J]. Complementary Therapies in Clinical Practice, 2012, 18(1): 49-53. [9] Roengritthidet K, Kamanamool N, Udompataikul M, et al. Association between diet and acne severity: a cross-sectional study in Thai adolescents and adults [J]. Acta Dermato-Venereologica, 2021, 101(12): adv00611. doi: 10.2340/actadv.v101.569. [10] Jones V A, Patel P M, Wilson C, et al.Complementary and alternative medicine treatments for common skin diseases: a systematic review and meta-analysis[J]. JAAD International, 2021, 2: 76-93. [11] Meixiong J, Ricco C, Vasavda C, et al.Diet and acne: a systematic review[J]. JAAD International, 2022, 7: 95-112. [12] Messire G, Serreau R, Berteina-Raboin S.Antioxidant effects of catechins (EGCG), andrographolide, and curcuminoids compounds for skin protection, cosmetics, and dermatological uses: an update[J]. Antioxidants, 2023, 12(7): 1317. doi: 10.3390/antiox12071317. [13] 姜秋香. 茶多酚的祛痘护肤功效及对皮肤菌群的作用研究[D]. 昆明: 云南中医药大学, 2023. Jiang Q X.Study on the effect of tea polyphenols on acne and skin care and the effect on skin flora [D]. Kunming: Yunnan University of Chinese Medicine, 2023. [14] Velasco M V R, Tano C T N, Machado-Santelli G M, et al. Effects of caffeine and siloxanetriol alginate caffeine, as anticellulite agents, on fatty tissue: histological evaluation[J]. Journal of Cosmetic Dermatology, 2008, 7(1): 23-29. [15] 大连市皮肤病医院. 茶多酚抗痤疮外用制剂: CN201010010139.6[P].2021-05-30[2023-09-12]. Dalian Dermatosis Hospital. Tea polyphenols anti-acne topical preparation: CN201010010139.6 [P].2021-05-30[2023-09-12]. [16] 株式会社爱茉莉太平洋. 茶氨酸衍生物及其制备方法和在减轻痤疮中的应用: CN201180038302.2[P].2014-12-31[2023-09-12]. Amore Pacific Corporation. Tea amino acid derivatives and their preparation methods and applications in the alleviation of acne: CN201180038302.2 [P].2014-12-31[2023-09-12]. [17] Waranuch N, Phimnuan P, Yakaew S, et al.Antiacne and antiblotch activities of a formulated combination of [18] 刘俐, 隋丽华, 韩国柱, 等. 茶多酚乳膏治疗重症痤疮的临床疗效观察[J]. 中草药, 2009, 40(9): 1448-1449. Liu L, Sui L H, Han G Z, et al.Clinical observation of the therapeutic effect of tea polyphenols cream in the treatment of severe acne[J]. Chinese Traditional and Herbal Drugs, 2009, 40(9): 1448-1449. [19] Cao K, Liu Y, Liang N N, et al.Fatty acid profiling in facial sebum and erythrocytes from adult patients with moderate acne[J]. Frontiers in Physiology, 2022, 13: 921866. doi: 10.3389/fphys.2022.921866. [20] Bhat Y J, Latief I, Hassan I.Update on etiopathogenesis and treatment of acne[J]. Indian Journal of Dermatology, Venereology and Leprology, 2017, 83(3): 298-306. [21] Wu S H, Zhang X, Wang Y, et al.Lipid metabolism reprogramming of immune cells in acne: an update[J]. Clinical, Cosmetic and Investigational Dermatology, 2023, 16: 2391-2398. [22] Agamia N F, Abdallah D M, Sorour O, et al.Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet[J]. The British Journal of Dermatology, 2016, 174(6): 1299-1307. [23] Cong T X, Hao D, Wen X, et al.From pathogenesis of acne vulgaris to anti-acne agents[J]. Archives of Dermatological Research, 2019, 311(5): 337-349. [24] Moseti D, Regassa A, Kim W K.Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules[J]. International Journal of Molecular Sciences, 2016, 17(1): 124. doi: 10.3390/ijms17010124. [25] Maarouf M, Platto J F, Shi V Y.The role of nutrition in inflammatory pilosebaceous disorders: Implication of the skin-gut axis[J]. Australasian Journal of Dermatology, 2019, 60(2): e90-e98. [26] Melnik B C.Linking diet to acne metabolomics, inflammation, and comedogenesis: an update[J]. Clinical, Cosmetic and Investigational Dermatology, 2015, 8: 371-388. [27] Ganceviciene R, Graziene V, Fimmel S, et al.Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris[J]. The British Journal of Dermatology, 2009, 160(2): 345-352. [28] Ganceviciene R, Graziene V, Böhm M, et al.Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris[J]. Experimental Dermatology, 2007, 16(7): 547-552. [29] Musial C, Kuban-Jankowska A, Gorska-Ponikowska M.Beneficial properties of green tea catechins[J]. International Journal of Molecular Sciences, 2020, 21(5): 1744. doi: 10.3390/ijms21051744. [30] 廖培羽, 施歌. 表没食子儿茶素没食子酸酯(EGCG)治疗痤疮的作用机制研究进展[J]. 中国美容医学, 2016, 25(8): 104-106. Liao P Y, Shi G.Research progress on the mechanism of epigallocatechin gallate (EGCG) in the treatments of acne[J]. Chinese Journal of Aesthetic Medicine, 2016, 25(8): 104-106. [31] Im M, Kim S Y, Sohn K C, et al.Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes[J]. Journal of Investigative Dermatology, 2012, 132(12): 2700-2708. [32] Kwack M H, Ha D L, Lee W J.Preventative effects of antioxidants on changes in sebocytes, outer root sheath cells, and [33] Rothenberg D O, Zhou C, Zhang L.A review on the weight-loss effects of oxidized tea polyphenols[J]. Molecules, 2018, 23(5): 1176. doi: 10.3390/molecules23051176. [34] Pires-de-Campos M S M, Leonardi G R, Chorilli M, et al. The effect of topical caffeine on the morphology of swine hypodermis as measured by ultrasound[J]. Journal of Cosmetic Dermatology, 2008, 7(3): 232-237. [35] Herman A, Herman A P.Caffeine’s mechanisms of action and its cosmetic use[J]. Skin Pharmacology and Physiology, 2013, 26(1): 8-14. [36] Kurokawa I, Layton A M, Ogawa R.Updated treatment for acne: targeted therapy based on pathogenesis[J]. Dermatology and Therapy, 2021, 11(4): 1129-1139. [37] Xu H X, Li H Y.Acne, the skin microbiome, and antibiotic treatment[J]. American Journal of Clinical Dermatology, 2019, 20(3): 335-344. [38] Shamloul G, Khachemoune A.An updated review of the sebaceous gland and its role in health and diseases Part 2: pathophysiological clinical disorders of sebaceous glands[J]. Dermatologic Therapy, 2021, 34(2): e14862. doi: 10.1111/dth.14862. [39] Mias C, Mengeaud V, Bessou-Touya S, et al.Recent advances in understanding inflammatory acne: deciphering the relationship between [40] Xu X X, Ran X, Tang J Q, et al.Skin microbiota in non-inflammatory and inflammatory lesions of acne vulgaris: the underlying changes within the pilosebaceous unit[J]. Mycopathologia, 2021, 186(6): 863-869. [41] Dagnelie M A, Corvec S, Saint-Jean M, et al. [42] Kistowska M, Meier B, Proust T, et al.Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients[J]. The Journal of Investigative Dermatology, 2015, 135(1): 110-118. [43] Omer H, McDowell A, Alexeyev O A. Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies[J]. Clinics in Dermatology, 2017, 35(2): 118-129. [44] Kwon K C, Won J G, Kim M S, et al.Anti-acne activity of carnitine salicylate and magnolol through the regulation of exfoliation, lipogenesis, bacterial growth and inflammation[J]. Skin Research and Technology, 2023, 29(7): e13406. doi: 10.1111/srt.13406. [45] Kuehnast T, Cakar F, Weinhäupl T, et al.Comparative analyses of biofilm formation among different [46] Acet Ö, Dikici E, Acet B Ö, et al.Inhibition of bacterial adhesion by epigallocatechin gallate attached polymeric membranes[J]. Colloids and Surfaces B: Biointerfaces, 2023, 221: 113024. doi: 10.1016/j.colsurfb.2022.113024. [47] Yoon J Y, Kwon H H, Min S U, et al.Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting [48] Xu F W, Lv Y L, Zhong Y F, et al.Beneficial effects of green tea EGCG on skin wound healing: a comprehensive review[J]. Molecules, 2021, 26(20): 6123. doi: 10.3390/molecules26206123. [49] Hengge R.Targeting bacterial biofilms by the green tea polyphenol EGCG[J]. Molecules, 2019, 24(13): 2403. doi: 10.3390/molecules24132403. [50] Shinde S, Lee L H, Chu T.Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics[J]. Antibiotics, 2021, 10(2): 102. doi: 10.3390/antibiotics10020102. [51] Lima E M F, Winans S C, Pinto U M. Quorum sensing interference by phenolic compounds: a matter of bacterial misunderstanding[J]. Heliyon, 2023, 9(7): e17657. doi: 10.1016/j.heliyon.2023.e17657. [52] Wang Y S, Bian Z R, Wang Y.Biofilm formation and inhibition mediated by bacterial quorum sensing[J]. Applied Microbiology and Biotechnology, 2022, 106(19/20): 6365-6381. [53] Zhu J L, Huang X Z, Zhang F, et al.Inhibition of quorum sensing, biofilm, and spoilage potential in [54] Hao S Q, Yang D, Zhao L, et al.EGCG-mediated potential inhibition of biofilm development and quorum sensing in [55] Zheng T, Cui M, Chen H, et al.Co-assembled nanocomplexes comprising epigallocatechin gallate and berberine for enhanced antibacterial activity against multidrug resistant [56] Chen Y, Gao Y, Yuan M, et al.Anti- [57] Choudhary M, Verma V, Saran R, et al.Natural biosurfactant as antimicrobial agent: strategy to action against fungal and bacterial activities[J]. Cell Biochemistry and Biophysics, 2022, 80(1): 245-259. [58] Khan M I, Ahhmed A, Shin J H, et al.Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study [59] Albalat W, Darwish H, Abd-Elaal W H, et al. The potential role of insulin-like growth factor 1 in acne vulgaris and its correlation with the clinical response before and after treatment with metformin[J]. Journal of Cosmetic Dermatology, 2022, 21(11): 6209-6214. [60] Mattii M, Lovászi M, Garzorz N, et al.Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells[J]. The British Journal of Dermatology, 2018, 178(3): 722-730. [61] Mokra D, Joskova M, Mokry J.Therapeutic effects of green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis[J]. International Journal of Molecular Sciences, 2022, 24(1): 340. doi: 10.3390/ijms24010340. [62] He Y, Yang Z J, Pi J W, et al.EGCG attenuates the neurotoxicity of methylglyoxal via regulating MAPK and the downstream signaling pathways and inhibiting advanced glycation end products formation[J]. Food Chemistry, 2022, 384: 132358. doi: 10.1016/j.foodchem.2022.132358. [63] Wu Y Y, Cui J.(-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2020, 393(11): 2209-2220. doi: 10.1007/s00210-020-01841-1. [64] Žaloudíková M.Mechanisms and effects of macrophage polarization and its specifics in pulmonary environment[J]. Physiological Research, 2023, 72(s2): S137-S156. [65] Vassiliou E, Farias-Pereira R.Impact of lipid metabolism on macrophage polarization: implications for inflammation and tumor immunity[J]. International Journal of Molecular Sciences, 2023, 24(15): 12032. doi: 10.3390/ijms241512032. [66] Ye J, Li Q H, Zhang Y S, et al.ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing[J]. Acta Biomaterialia, 2023, 166: 155-166. [67] Han M G, Wang X, Wang J, et al.Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: a potential mechanism of inflammation-related necroptosis[J]. Frontiers in Nutrition, 2022, 9: 953646. doi: 10.3389/fnut.2022.953646. [68] Xu Y H, Zhu J, Hu J Y, et al. [69] Zeng W J, Tan Z, Lai X F, et al.Topical delivery of L-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation[J]. Chemico-Biological Interactions, 2018, 284: 69-79. [70] Liu K H, Liu E S, Lin L, et al.L-theanine mediates the p38MAPK signaling pathway to alleviate heat-induced oxidative stress and inflammation in mice[J]. Food & Function, 2022, 13(4): 2120-2130. [71] Li Z D, Geng M Y, Dou S R, et al.Caffeine decreases hepcidin expression to alleviate aberrant iron metabolism under inflammation by regulating the IL-6/STAT3 pathway[J]. Life, 2022, 12(7): 1025. doi: 10.3390/life12071025. [72] Zhou J, Bian H Y, Wu N.Protein inhibitor of activated STAT3 (PIAS3) attenuates psoriasis and associated inflammation[J]. The Journal of Dermatology, 2023, 50(10): 1262-1271. [73] Vargas-Pozada E E, Ramos-Tovar E, Rodriguez-Callejas J D, et al. Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model[J]. International Journal of Molecular Sciences, 2022, 23(17): 9954. doi: 10.3390/ijms23179954. [74] Alagawany M, Abd El-Hack M E, Saeed M, et al. Nutritional applications and beneficial health applications of green tea and L-theanine in some animal species: a review[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 245-256. [75] Pan L Y, Lu Y, Dai S, et al.The role of cholesterol in modifying the lipid-lowering effects of Fuzhuan brick-tea in [76] Lee Y R, Moon G H, Shim D, et al.Neuroprotective effects of fermented tea in MPTP-induced Parkinson’s disease mouse model via MAPK signaling-mediated regulation of inflammation and antioxidant activity[J]. Food Research International, 2023, 164: 112133. doi: 10.1016/j.foodres.2022.112133. |
| [1] | TANG Haikun, ZHANG Lanjun, ZHANG Panpan, LIU Benying. Research Progress on Chemical Constituents and Biological Activities of Alkaloids in Tea [J]. Journal of Tea Science, 2025, 45(5): 727-741. |
| [2] | TU Yiyi, ZHANG You, XU Ting, CHEN Junjie, WANG Yuchun, LÜ Wuyun. Loop-mediated Isothermal Amplification-based Detection of Colletotrichum camelliae [J]. Journal of Tea Science, 2025, 45(5): 770-782. |
| [3] | JIANG Li, LI Duojiao, HU Xinrong, SHEN Yingzi, ZHENG Zhaisheng, WENG Xiaoxing, LIU Shujing, BIAN Xiaodong, YUAN Ming'an, CHEN Xuan. Effects of Different Cultivation Patterns on Physiological and Biochemcial Characteristics of New Shoots in Seed-Leaf Dual-Purpose Tea Plants [J]. Journal of Tea Science, 2025, 45(5): 783-794. |
| [4] | WANG Kairong, ZHANG Longjie, LIANG Yuerong, LI Xiaoxiang, ZHENG Xinqiang. Identification and Classification of Tea Leaf Color and Establishment of A Tea Leaf Color System [J]. Journal of Tea Science, 2025, 45(5): 795-807. |
| [5] | LI Jing, HU Xinlong, TANG Huishan, GUO Jinling, HU Guangcan, FENG Depin, QIU Fangfang, WANG Mingle. Integrated Sensory Evaluation and Metabolomics Analysis of the Quality Characteristics of Yihong Black Tea with Different Levels of Tenderness [J]. Journal of Tea Science, 2025, 45(5): 808-820. |
| [6] | GUO Yu, XIAO Liuyu, DU Qiuyi, TIAN Ye, HAN Yu. Study on Comprehensive Optimization of the Extraction Process and Emulsion Loading System of Water-extracted Polysaccharides from Qingzhuan Tea and Alkali-extracted Polysaccharides from Tea Residue [J]. Journal of Tea Science, 2025, 45(5): 821-840. |
| [7] | SU Lin, HUANG Zihao, SUN Dan, CHEN Jinhua, ZHENG Yajie, LU Ying. Study on the Hypoglycemic Effects of Major Compounds in White Tea Based on Network Pharmacology and Zebrafish Model [J]. Journal of Tea Science, 2025, 45(5): 841-851. |
| [8] | WANG Yonghui, WANG Duofeng, LI Xuemin, SHI Tianbin, WU Lidong, LIU Zaiguo, ZHANG Guangzhong, ZHAO Fengyun. Study on the Physicochemical Components and in Vitro Antioxidant Differences of Green Tea from Longnan, Gansu and Jinhua, Zhejiang [J]. Journal of Tea Science, 2025, 45(5): 852-864. |
| [9] | CHEN Junrui, HU Junming, SHI Yuanzhi, WEI Xianghua, SONG Chuankui, ZHANG Junhui, ZHENG Fuhai, SUO Guangli. The Effects of Biochar-based Fertilizer on the Physical Stability of Organic Carbon in Soil Aggregates of Tea Gardens [J]. Journal of Tea Science, 2025, 45(5): 865-878. |
| [10] | LI Bing, ZHU Yong, XIA Chenglong, LI Feilong, CAI Zhenyang, WU Hao. Lightweight Online Sorting Method of Milled Tea Based on Improved YOLOv5s [J]. Journal of Tea Science, 2025, 45(5): 879-897. |
| [11] | MENG Chao, LIANG Tao, ZHANG Xia, WANG Wanhong, DONG Huanglin, LI Ming. Research on Tea Light Complementary Mode Based on Tea Planting and Photovoltaic Power Generation [J]. Journal of Tea Science, 2025, 45(5): 898-908. |
| [12] | ZHOU Yide, CHEN Jialin, WU Junmei, ZHAO Hongbo, SUN Binmei, LIU Shaoqun, ZHENG Peng. Nitrogen Metabolism Genes in Tea Plant: Research Progress on the Environmental Stress Adaptation Mechanism and Breeding Application [J]. Journal of Tea Science, 2025, 45(4): 545-558. |
| [13] | SUN Mengzhen, HU Zhihang, YANG Kaixin, ZHANG Jiaqi, ZHANG Nan, XIONG Aisheng, LIU Hui, ZHUANG Jing. Identification of Circadian Clock CsLUX Gene and Its Effects on Photosynthetic Characteristics in Tea Plants [J]. Journal of Tea Science, 2025, 45(4): 559-570. |
| [14] | MENG Zhaona, Fida Hussain Magsi, ZHAO Dongxiang, ZHOU You, LI Jianlong, NONG Hongqiu, LONG Yaqin, ZHAO Yuanyan, HUANG Liyun, BIAN Lei, LI Zhaoqun, LUO Zongxiu, XIU Chunli, FU Nanxia, CHEN Zongmao, CAI Xiaoming. Investigation on the Helopeltis (Hemiptera) Species in Tea Gardens of China [J]. Journal of Tea Science, 2025, 45(4): 615-624. |
| [15] | SUN Yu, ZHOU Li, ZHANG Xinfu, SUN Hezhi. Determination of 20 Phthalate Acid Esters in Tea Leaves by GC-MS/MS [J]. Journal of Tea Science, 2025, 45(4): 625-636. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||