[1] 刘湛军, 蹇丹, 李滔滔, 等. 黑茶活性成分及健康功效研究进展[J]. 湖南城市学院学报(自然科学版), 2024, 33(4): 67-72.
Liu Z J, Jian D, Li T T, et al. Research progress on active ingredients and
health effects of dark tea [J]. Journal of Hunan City University (Natural
Science), 2024, 33(4): 67-72.
[2] 袁旭霜, 慕妍璐, 王凡, 等. 茯茶多糖的消化特性和体外免疫调节活性比较研究[J]. 陕西科技大学学报,
2023, 41(1): 45-51, 65.
Yuan X S, Mu Y L, Wang F, et al. Comparative study on digestive properties and
in vitro immunomodulatory activity of Fu brick tea polysaccharides [J]. Journal
of Shaanxi University of Science, 2023, 41(1): 45-51, 65.
[3] 王凡. 陕西茯茶多糖的结构特性、免疫调节活性及其作用机制研究[D]. 西安: 陕西科技大学, 2022.
Wang F. Study on structural characteristics, immunomodulatory activity and its
mechanism of Shaanxi Fuzhuan brick tea polysaccharide [D]. Xi′an: Shaanxi
University of Science and Technology, 2022.
[4] 张明珠, 秦华光, 穆丹, 等. 茶多糖的抗氧化活性及对细胞氧化损伤的保护机制[J]. 植物学报, 2022,
57(4): 444-456.
Zhang M Z, Qin H G, Mu D, et al. Antioxidant activity of tea polysaccharide and
its protective mechanism against oxidative damage [J]. Chinese Bulletin of
Botany, 2022, 57(4): 444-456.
[5] 夏晓月, 关丽萍, 纪丽丽, 等. 富锶茶多糖提取物的抗氧化活性及其对H2O2诱导LO2细胞氧化损伤保护研究[J]. 食品安全质量检测学报,
2023, 14(22): 19-28.
Xia X Y, Guan L P, Ji L L, et al. Antioxidant activity of strontium-rich tea
polysaccharide extract and its protection against H2O2-induced
oxidative damage in LO2 cells [J]. Journal of Food Safety and Quality, 2023,
14(22): 19-28.
[6] Chen X Q, Zhang Y T, Han Y, et
al. Emulsifying properties of polysaccharide conjugates prepared from
chin-brick tea [J]. Journal of Agricultural and Food Chemistry, 2019, 67(36):
10165-10173.
[7] 张瑞刚, 王超越. 沙棘叶茶多糖提取工艺优化及体外降脂活性研究[J]. 北方园艺, 2024(1): 93-99.
Zhang R G, Wang C Y. Optimization of extraction process and in vitro lipid-lowering activity of
seabuckthorn leaf tea polysaccharides [J]. Northern Horticulture, 2024(1):
93-99.
[8] Huang R, Yu H F. Extraction
methods, chemical compositions, molecular structure, health functions, and
potential applications of tea polysaccharides as a promising biomaterial: a
review [J]. International Journal of Biological Macromolecules, 2024, 277:
134150. doi: 10.1016/j.ijbiomac.2024.134150.
[9] Zhang Q J, Shan Z Y, Zhou C X,
et al. Effect of oil structure on adsorption behavior of emulsifier at the
oil-polyol interface and the emulsion features [J]. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 2024, 703: 135198. doi:
10.1016/j.colsurfa.2024.135198.
[10] 郑淑琳, 羽观华, 罗盛财, 等. 不同武夷名丛鲜叶茶多糖组成分析及体外抗氧化活性比较研究[J]. 中国茶叶, 2024,
46(2): 19-27.
Zheng S L, Yu G H, Luo S C, et al. Comparative study on the composition and in vitro antioxidant activity of
polysaccharide in different Wuyi mingcong tea germplasms [J]. China Tea, 2024,
46(2): 19-27.
[11] Yao J M, Liu H F, Ma C Y, et
al. A review on the extraction, bioactivity, and application of tea polysaccharides [J]. Molecules, 2022,
27(15): 4679. doi: 10.3390/molecules27154679.
[12] Cao M, Cao Z, Tian J J, et al.
Structural characterization and in vitro antioxidant activity of a novel polysaccharide from summer-autumn tea [J].
Foods, 2024, 13(6): 821. doi: 10.3390/foods13060821.
[13] Wang S N, Yang J J, Shao G Q,
et al. Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion:
effect of polysaccharides concentration on the storage stability and
interfacial rheological properties [J]. Food Hydrocolloids, 2020, 101: 105490.
doi: 10.1016/j.foodhyd.2019.105490.
[14] 韩宇. 绿茶水提茶多糖和碱提茶多糖的乳化活性研究[D]. 武汉: 湖北工业大学, 2019.
Han Y. Emulsification activity for the polysaccharide conjugates
water-extracted and alkali-extracted from green tea [D]. Wuhan: Hubei
University of Technology, 2019
[15] 李焱, 林泳峰, 刘文美, 等. 茶多糖研究的现状与发展趋势[J]. 茶叶科学, 2023,
43(4): 447-459.
Li Y, Lin Y F, Liu W M, et al. Present status and development trends of
research on tea polysaccharides [J]. Journal of Tea Science, 2023, 43(4):
447-459.
[16] 周宇波, 李霞飞, 高岳芳, 等. 水热法提取龙井长叶中茶多糖工艺优化研究[J]. 西北林学院学报, 2018,
33(1): 207-210, 240.
Zhou Y B, Li X F, Gao Y F, et al. Optimization of extraction technology of
polysaccharides by hydrothermal method from Longjing-changye (Camellia sinensis) [J]. Journal of
Northwest Forestry University, 2018, 33(1): 207-210, 240.
[17] Wei Y, Shao J, Wei K, et al.
Influence of Qingzhuan tea polysaccharides on F-adsorption: molecular
structure, binding behavior, and in vitro and in vivo digestion and metabolism [J].
Journal of Agricultural and Food Chemistry, 2024, 72(47): 26384-26403.
[18] 杨许花, 张竞文, 刘红海, 等. 藏柳茶多糖的提取、结构解析及抗氧化活性分析[J]. 现代食品科技, 2022,
38(12): 318-328.
Yang X H, Zhang J W, Liu H H, et al. Extraction, structure, and antioxidant
activity analysis of polysaccharides from sibiraea angus tata [J]. Modern Food
Science and Technology, 2022, 38(12): 318-328.
[19] 黄秀红, 刘丽辰, 阮怿航, 等. 响应面优化低共熔溶剂提取乌龙茶多糖的研究[J]. 食品研究与开发, 2020,
41(11): 96-103.
Huang X H, Liu L C, Ruan Z H, et al. Optimization of deep eutectic solvents
extraction of polysaccharides from oolong tea by response surface methodology
[J]. Food Research and Development, 2020, 41(11): 96-103.
[20] 杨宇平, 许良, 徐春娜, 等. 响应面法优化提取安吉白茶多糖工艺[J]. 山西农业科学, 2019,
47(9): 1653-1658.
Yang Y P, Xu L, Xu C N, et al. Study on optimization of polysaccharide
extraction from Anji white tea by response surface method [J]. Journal of
Shanxi Agricultural Sciences, 2019, 47(9): 1653-1658.
[21] 琚晶晶, 胡飞阳, 赵保堂, 等. 当归多糖提取方法对其提取率及理化性质的影响[J]. 食品科技, 2024,
49(2): 195-202.
Ju J J, Hu F Y, Zhao B T, et al. Effects of extraction methods on the
extraction rate and physicochemical properties of angelica sinensis
polysaccharides [J]. Food Science and Technology, 2024, 49(2): 195-202.
[22] 庞一帆. 海藻酸钠活性包装膜的开发及其在水产品保鲜中的应用[D]. 大连: 大连海洋大学, 2024.
Pang Y F. Development of the active packaging film based on sodium alginate and
the application in aquatic products preservation [D]. Dalian: Dalian Ocean
University, 2024.
[23] 罗艳华, 王全杰, 陈沛海. 乌氏粘度计测定废革屑水解液粘均分子量的研究[J]. 皮革与化工, 2017,
34(1): 10-14.
Luo Y H, Wang Q J, Chen P H., et al. Study on the determination of viscosity
average molecular weight of the leather hydrolyzed chip with unbeholden
viscometer [J]. Leather and Chemicals, 2017, 34(1): 10-14.
[24] 张召, 易阳, 彭凯迪, 等. 莲藕多糖的碱法提取工艺优化与抗氧化活性评价[J]. 食品安全质量检测学报,
2023, 14(2): 256-263.
Zhang Z, Yi Y, Peng K D, et al. Optimization of alkaline extraction technology
and evaluation of antioxidant activity of Nelumbo
nucifera Gaertn. polysaccharide [J]. Journal of Food Safety and Quality,
2023, 14(2): 256-263.
[25] 刘小敏, 易陈颖, 彭有娃, 等. 铁皮石斛抗氧化活性及抑制亚硝化作用研究[J]. 广东化工, 2020,
47(12): 11-14.
Liu X M, Yi C Y, Peng Y W, et al. Study on antioxidant activity and inhibition
of nitrosation effects of dendrobium officinale [J]. Guangdong Chemical
Industry, 2020, 47(12): 11-14.
[26] 李朋泰, 张家培, 刘亚慧, 等. 枯草芽孢杆菌发酵法制备鸡骨抗氧化肽的工艺优化[J]. 食品研究与开发, 2024,
45(21): 108-117.
Li P T, Zhang J P, Liu Y H, et al. Fermentation condition optimization of
chicken bone with bacillus subtilis for production of antioxidant peptides [J].
Food Research and Development, 2024, 45(21): 108-117.
[27] Wang J Y, Xie Y A, Feng Y, et
al. [Corrigendum] (-)Epigallocatechin gallate induces apoptosis in B lymphoma
cells via caspase-dependent pathway and Bcl-2 family protein modulation [J].
International Journal of Oncology, 2024, 65(4): 95. doi: 10.3892/ijo.2024.5683.
[28] 王君文. 银耳多糖为乳化剂的槲皮素微乳制备及固化研究[D]. 上海: 上海海洋大学, 2021.
Wang J W. Study on preparation and solidification of quercetin microemulsion
with tremella polysaccharide as emulsifier [D]. Shanghai: Shanghai Ocean
University, 2021.
[29] Cheng X Q, Xie J C, Huang W, et
al. Comparative analysis of physicochemical characteristics of green tea
polysaccharide conjugates and its decolored fraction and their effect on HepG2
cell proliferation [J]. Industrial Crops and Products, 2019, 131: 243-249.
[30] Chen X Q, Han Y, Meng H, et al.
Characteristics of the emulsion stabilized by polysaccharide conjugates
alkali-extracted from green tea residue and its protective effect on catechins [J].
Industrial Crops and Products, 2019, 140: 111611. doi:
10.1016/j.indcrop.2019.111611.
[31] Chen X Q, Han Y, Zhou T F, et
al. Emulsification of Scutellaria
baicalensis Georgi polysaccharide conjugate and its inhibition on
epigallocatechin (EGC) oxidation [J]. LWT-Food Science & Technology, 2021,
143: 111175. doi: 10.1016/j.lwt.2021.111175.
[32] 冯振华. 西洋参多糖乳液的制备、表征及其应用研究[D]. 济南: 齐鲁工业大学, 2024.
Feng Z H. Preparation, Characterization and application of panax quinquefolia’s
polysaccharide emulsion [D]. Jin′an: Qilu University of Technology, 2024.
[33] 王宇安. 功能油脂-EGCG纳米乳液的制备及应用[D]. 杭州: 浙江农林大学, 2024.
Wang Y A. Preparation and application of functional oil-EGCG nano emulsion [D].
Hangzhou: Zhejiang A & F University, 2024.
[34] 李姿坤. 牛血清白蛋白-普鲁兰多糖-儿茶素纳米颗粒的制备及其在Pickering乳液的应用研究[D]. 烟台: 烟台大学, 2024.
Li Z K. Preparation of
bovine serum albumin-pullulan-catechin nanoparticles
and its application in pickering emulsion [D]. Yantai: Yantai University, 2024.
[35] 王鑫宇. WPI-EGCG复合物稳定的Pickering乳液体系构建及应用[D]. 长春: 吉林大学, 2024.
Wang X Y. Construction and application of WPI-EGCG complex stabilized pickering
emulsion system [D]. Changchun: Jilin University, 2024.
[36] 张晓娜, 李云波, 黄滢洁, 等. 响应面法优化银杏叶多糖碱提工艺的研究[J]. 粮食与油脂, 2021,
34(4): 87-89, 103.
Zhang X N, Li Y B, Huang Y J, et al. Optimization of alkali extraction process
conditions of polysaccharides from Ginkgo
biloba L. leaf with response surface methodology [J]. Cereals & Oils,
2021, 34(4): 87-89, 103.
[37] 曹淼, 化志秀, 曹正, 等. 夏秋茶多糖的超声波辅助提取工艺优化[J]. 安徽农业科学, 2023,
51(4): 174-177.
Cao M, Hua Z X, Cao Z, et al. Optimization of ultrasound assisted extraction of
summer and autumn tea polysaccharide [J]. Journal of Anhui Agricultural
Sciences, 2023, 51(4): 174-177.
[38] 李密转, 李名立, 陈宏燕, 等. 贵州锌硒茶茶多糖的超声辅助提取工艺优化[J]. 贵州农业科学, 2022,
50(4): 125-131.
Li M Z, Li M L, Chen H Y, et al. Optimization of extracting polysaccharides
from Guizhou zinc-selenium tea by ultrasonic-assisted methodology [J]. Guizhou
Agricultural Sciences, 2022, 50(4): 125-131.
[39] 汪咪娜, 王迪, 张静, 等. 响应面法优化生物酶法提取滇红茶多糖工艺技术研究[J]. 中国食品添加剂, 2023,
34(5): 168-175.
Wang M N, Wang D, Zhang J, et al. Optimization of enzyme extraction of tea
polysaccharides from Yunnan black tea by response surface methodology [J].
China Food Additives, 2023, 34(5): 168-175.
[40] 罗兰心, 张静, 刘洋, 等. 响应面法优化酶法提取宁红茶多糖工艺[J]. 食品研究与开发, 2023,
44(2): 66-72.
Luo L X, Zhang J, Liu Y, et al. Optimization of enzymatic extraction of tea
polysaccharides from Ninghong black tea by response surface methodology [J].
Food Research and Development, 2023, 44(2): 66-72.
[41] 刘舜慧, 吕淑珍, 李少华, 等. 响应面法优化乌龙茶提取茶多糖的工艺研究[J]. 鞍山师范学院学报,
2024, 26(2): 43-49.
Liu S H, Lü S Z, Li S H, et al. Optimization of extraction process of tea
polysaccharide from oolong tea based on response surface methodology [J].
Journal of Anshan Normal University, 2024, 26(2): 43-49.
[42] 陈小强. 不同方法提制的绿茶多糖理化特性及生物学活性研究[D]. 杭州: 浙江工商大学, 2015.
Chen X Q. Study on physicochemical properties and biological activities of
green tea polysaccharides extracted by different methods [D]. Hangzhou: Zhejiang
Gongshang University, 2015.
[43] Fan M H, Zhu J X, Qian Y L, et
al. Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic
activities [J]. Journal of Food Biochemistry, 2020, 44(8): 13277. doi:
10.1111/jfbc.13277.
[44] 石曾卉, 刘丽阳, 洪慧丽, 等. 山芹菜多糖的分离纯化,结构分析及抗氧化活性比较[J]. 现代食品科技, 2022, 38(10): 124-132.
Shi Z H, Liu L Y, Hong H L, et al. Isolation, purification, structure analysis
and comparison of antioxidant activity of the polysaccharides from Ostericum sieboldin [J]. Modern Food
Science and Technology, 2022, 38(10): 124-132.
[45] Huang J Q, Wang M
Y, Wang Y, et al. Preparation, characterization and in vitro antioxidant activities of a homogeneous polysaccharide
from Prunella vulgaris [J].
Fitoterapia, 2025, 181: 106371. doi: 10.1016/j.fitote.2024.106371.
[46] Luo Y, Zhao Z J, Chen H J, et
al. Dynamic analysis of physicochemical properties and polysaccharide composition
during the pile-fermentation of post-fermented tea [J]. Foods, 2022, 11(21):
3376. doi: 10.3390/foods11213376.
[47] 陈薛, 左欣欣, 徐安安, 等. 不同茶树品种鲜叶多糖的理化性质和抗氧化活性比较研究[J]. 茶叶科学, 2022,
42(6): 806-818.
Chen X, Zuo X X, Xu A A, et al. Comparative study on the physicochemical
characteristics and antioxidant activity of the polysaccharides from fresh
leaves of different tea cultivars [J]. Journal of Tea Science, 2022, 42(6):
806-818.
[48] Pan H H, Jiao W J, Wang F L, et
al. Fabrication, characterization,
and dihydromyricetin-loaded bioavailability of
Pickering emulsions stabilized by Ampelopsis grossedentata polysaccharide-fish
collagen peptide composite nanoparticles [J]. Colloids and Surfaces A-Physicochemical
and Engineering Aspects, 2024, 701: 134987. doi: 10.1016/j.colsurfa.2024.134987.
Xu
Y, Wang S N, Xin L W, et al. Exploring the influence of different enzymes on
soy hull polysaccharide emulsion stabilization: a study on interfacial behavior
and structural changes [J]. Food Chemistry, 2025, 463: 141147. doi:
10.1016/j.foodchem.2024.141147. |