






			
			
	Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (1): 102-111.doi: 10.13305/j.cnki.jts.2018.01.011
PAN Lianyun, LU Yan, GONG Yushun*
Received:2017-06-29
															
							
																	Revised:2017-09-20
															
							
															
							
																	Online:2018-02-15
															
							
																	Published:2019-08-28
															
						CLC Number:
PAN Lianyun, LU Yan, GONG Yushun. The Mechanism of the Lipid-lowering Effect of Tea by Regulating the SREBP[J]. Journal of Tea Science, 2018, 38(1): 102-111.
| [1] | MOKDAD A H, FORD E S, BOWMAN B A, et al.Prevalence of obesity, diabetes, and obesity-related health risk factors[J]. Jama, 2003, 289(1): 76-79. | 
| [2] | FINUCANE M M, STEVENS G A, COWAN M J, et al.National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants[J]. The Lancet, 2011, 377(9765): 557-567. | 
| [3] | MOON H-S, LEE H-G, CHOI Y-J, et al.Proposed mechanisms of (-)-epigallocatechin-3-gallate for anti-obesity[J]. Chemico-biological Interactions, 2007, 167(2): 85-98. | 
| [4] | FUJITA H, YAMAGAMI T.Efficacy and safety of Chinese black tea (Pu-erh) extract in healthy and hypercholesterolemic subjects[J]. Annals of Nutrition and Metabolism, 2008, 53(1): 33-42. | 
| [5] | HOU Y, SHAO W, XIAO R, et al.Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model[J]. Experimental Gerontology, 2009, 44(6): 434-439. | 
| [6] | FUJITA H, YAMAGAMI T.Antihypercholesterolemic effect of Chinese black tea extract in human subjects with borderline hypercholesterolemia[J]. Nutrition Research, 2008, 28(7): 450-456. | 
| [7] | CAO Z H, GU D H, LIN Q Y, et al.Effect of Pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity[J]. Phytotherapy Research, 2011, 25(2): 234-238. | 
| [8] | WOLFRAM S, WANG Y, THIELECKE F.Anti-obesity effects of green tea: from bedside to bench[J]. Molecular Nutrition & Food Research, 2006, 50(2): 176-187. | 
| [9] | HURSEL R, VIECHTBAUER W, WESTERTERP-PLANTENGA M.The effects of green tea on weight loss and weight maintenance: a meta-analysis[J]. International Journal of Obesity, 2009, 33(9): 956-961. | 
| [10] | KOVACS E M, LEJEUNE M P, NIJS I, et al.Effects of green tea on weight maintenance after body-weight loss[J]. British Journal of Nutrition, 2004, 91(3): 431-437. | 
| [11] | NAGAO T, HASE T, TOKIMITSU I.A green tea extract high in catechins reduces body fat and cardiovascular risks in humans[J]. Obesity, 2007, 15(6): 1473-1483. | 
| [12] | RAINS T M, AGARWAL S, MAKI K C.Antiobesity effects of green tea catechins: a mechanistic review[J]. The Journal of Nutritional Biochemistry, 2011, 22(1): 1-7. | 
| [13] | KHAN N, MUKHTAR H.Tea polyphenols for health promotion[J]. Life Sciences, 2007, 81(7): 519-533. | 
| [14] | ASHIDA H, FURUYASHIKI T, NAGAYASU H, et al.Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors[J]. Biofactors, 2004, 22(1/2/3/4): 135-140. | 
| [15] | SHIMAMURA Y, MIYUKI Y, SAKAKIBARA H, et al.Pu-erh tea suppresses diet-induced body fat accumulation in C57BL/6J mice by down-regulating SREBP-1c and related molecules[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(7): 1455-1460. | 
| [16] | DING Y, ZOU X, JIANG X, et al.Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans[J]. PloS One, 2015, 10(2): e0113815. Doi:10.1371/journal.pone.0113815. | 
| [17] | PENG Y, XIONG Z, LI J, et al.Water extract of the fungi from Fuzhuan brick tea improves the beneficial function on inhibiting fat deposition[J]. International Journal of Food Sciences and Nutrition, 2014, 65(5): 610-614. | 
| [18] | HEBER D, ZHANG Y, YANG J, et al.Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets[J]. The Journal of Nutrition, 2014, 144(9): 1385-1393. | 
| [19] | EGAWA T, HAMADA T, MA X, et al.Caffeine activates preferentially α1-isoform of 5′AMP‐activated protein kinase in rat skeletal muscle[J]. Acta Physiologica, 2011, 201(2): 227-238. | 
| [20] | SHRESTHA S, EHLERS S J, LEE J-Y, et al.Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats[J]. The Journal of Nutrition, 2009, 139(4): 640-645. | 
| [21] | COLLINS Q F, LIU H-Y, PI J, et al.Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5’-AMP-activated protein kinase[J]. Journal of Biological Chemistry, 2007, 282(41): 30143-30149. | 
| [22] | YANG C S, ZHANG J, ZHANG L, et al.Mechanisms of body weight reduction and metabolic syndrome alleviation by tea[J]. Molecular Nutrition & Food Research, 2016, 60(1): 160-174. | 
| [23] | LEE L S, CHOI J H, SUNG M J, et al.Green tea changes serum and liver metabolomic profiles in mice with high-fat diet-induced obesity[J]. Molecular Nutrition & Food Research, 2015, 59(4): 784-794. | 
| [24] | MURASE T, HARAMIZU S, SHIMOTOYODOME A, et al.Reduction of diet-induced obesity by a combination of tea-catechin intake and regular swimming[J]. International Journal of Obesity, 2006, 30(3): 561-568. | 
| [25] | SHINICHI MEGURO T H, TADASHI HASE. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract[J]. PloS One, 2015, 10(3): e0120142. Doi:10.1371/journal.pone.0120142. | 
| [26] | CUNHA C A, LIRA F S, ROSA NETO J C, et al. Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet[J]. Mediators of Inflammation, 2013 (6778): 635470. Doi:org/10.1155/2013/635470. | 
| [27] | SANTAMARINA A B, OLIVEIRA J L, SILVA F P, et al.Green tea extract rich in epigallocatechin-3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet[J]. PloS One, 2015, 10(11): e0141227. Doi:10.1371/journal.pone.0141227. | 
| [28] | YANG X, YIN L, LI T, et al.Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ[J]. International Journal of Clinical and Experimental Medicine, 2014, 7(12): 4906-4914. | 
| [29] | TIAN C, YE X, ZHANG R, et al.Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARγ-adiponectin pathway[J]. PloS One, 2013, 8(1): e53796. Doi:10.1371/journal.pone.0053796. | 
| [30] | JANSSENS P L, HURSEL R, WESTERTERP-PLANTENGA M S. Long-term green tea extract supplementation does not affect fat absorption, resting energy expenditure, and body composition in adults[J]. The Journal of Nutrition, 2015, 145(5): 864-870. | 
| [31] | HUANG J, WANG Y, XIE Z, et al.The anti-obesity effects of green tea in human intervention and basic molecular studies[J]. European Journal of Clinical Nutrition, 2014, 68(10): 1075-1087. | 
| [32] | PAN MH, LAI CS, WANG H, et al.Black tea in chemo-prevention of cancer and other human diseases[J]. Food Science and Human Wellness, 2013, 2(1): 12-21. | 
| [33] | HUNG M W WL. Chemistry and health beneficial effects of oolong tea and theasinensins[J]. Food Science and Human Wellness, 2015, 4(4): 133-146. | 
| [34] | KOO S I, NOH S K.Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect[J]. The Journal of Nutritional Biochemistry, 2007, 18(3): 179-183. | 
| [35] | SHISHIKURA Y, KHOKHAR S, MURRAY B S.Effects of tea polyphenols on emulsification of olive oil in a small intestine model system[J]. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1906-1913. | 
| [36] | WANG S, NOH S K, KOO S I.Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats[J]. The Journal of Nutrition, 2006, 136(11): 2791-2796. | 
| [37] | WANG S, NOH S K, KOO S I.Green tea catechins inhibit pancreatic phospholipase A2 and intestinal absorption of lipids in ovariectomized rats[J]. The Journal of Nutritional Biochemistry, 2006, 17(7): 492-498. | 
| [38] | NOH S K, KIM J, SEO Y, et al. Green tea (GT) extract lowers the lymphatic absorption of benzo [a] pyrene (BaP) in rats [J]. The FASEB Journal, 2008, 22(s1): 315.5-315. | 
| [39] | WOLFRAM S.Effects of green tea and EGCG on cardiovascular and metabolic health[J]. Journal of the American College of Nutrition, 2007, 26(4): 373-388. | 
| [40] | IKEDA I, YAMAHIRA T, KATO M, et al.Black tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats[J]. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8591-8595. | 
| [41] | GROVE K A, SAE-TAN S, KENNETT M J, et al.(-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice[J]. Obesity, 2012, 20(11): 2311-2313. | 
| [42] | SEO D-B, JEONG H W, CHO D, et al.Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice[J]. Journal of Medicinal Food, 2015, 18(5): 549-556. | 
| [43] | SALWAY J G.Metabolism at a glance[M]. Wiley-Blackwell, 2016: 50-82. | 
| [44] | ASHRAFI K.Obesity and the regulation of fat metabolism[M]. WormBook, 2007: 1-20. Doi:10.1895/wormbook.1.7.1. | 
| [45] | KENNEDY L M, PHAM S C, GRISHOK A.Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1[J]. Cell Reports, 2013, 4(5): 996-1009. | 
| [46] | SRINIVASAN S.Regulation of body fat in Caenorhabditis elegans[J]. Annual Review of Physiology, 2015, 77(1): 400-408. | 
| [47] | 张进. SREBP小分子调节剂的发现及其作用机制研究 [D]. 上海:华东师范大学, 2014. | 
| [48] | WATSON R T, KANZAKI M, PESSIN J E.Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes[J]. Endocrine reviews, 2004, 25(2): 177-204. | 
| [49] | AZZOUT-MARNICHE D, BÉCARD D, GUICHARD C, et al. Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes[J]. Biochemical Journal, 2000, 350(2): 389-393. | 
| [50] | LEE D, JEONG D-E, SON H G, et al.SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat[J]. Genes & Development, 2015, 29(23): 2490-2503. | 
| [51] | TAUBERT S, VAN GILST M R, HANSEN M, et al. A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and-independent pathways in C elegans[J]. Genes & Development, 2006, 20(9): 1137-1149. | 
| [52] | VENABLES M C, HULSTON C J, COX H R, et al.Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans[J]. The American Journal of Clinical Nutrition, 2008, 87(3): 778-784. | 
| [53] | YANG F, VOUGHT B W, SATTERLEE J S, et al.An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis[J]. Nature, 2006, 442(7103): 700-704. | 
| [54] | ASHRAFI K.Mapping out starvation responses[J]. Cell Metabolism, 2006, 3(4): 235-236. | 
| [55] | FERRE P, FOUFELLE F.SREBP-1c transcription factor and lipid homeostasis: clinical perspective[J]. Hormone Research in Paediatrics, 2007, 68(2): 72-82. | 
| [56] | S HLE J, KNOTT A, HOLTZMANN U, et al. White tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes[J]. Nutrition & Metabolism, 2009, 6(1): 20. Doi:10.1186/1743-7075-6-20. | 
| [57] | GREGOIRE F M.Adipocyte differentiation: from fibroblast to endocrine cell[J]. Experimental Biology and Medicine, 2001, 226(11): 997-1002. | 
| [58] | LIN J K, LIN-SHIAU S Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols[J]. Molecular Nutrition & Food Research, 2006, 50(2): 211-217. | 
| [59] | KAO Y H, CHANG H H, LEE M J, et al.Tea, obesity, and diabetes[J]. Molecular Nutrition & Food Research, 2006, 50(2): 188-210. | 
| [60] | WOLFRAM S, RAEDERSTORFF D, PRELLER M, et al.Epigallocatechin gallate supplementation alleviates diabetes in rodents[J]. The Journal of Nutrition, 2006, 136(10): 2512-2518. | 
| [61] | WOLFRAM S, RAEDERSTORFF D, WANG Y, et al.TEAVIGOTM (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass[J]. Annals of Nutrition and Metabolism, 2005, 49(1): 54-63. | 
| [62] | CHEN N, BEZZINA R, HINCH E, et al.Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet[J]. Nutrition Research, 2009, 29(11): 784-793. | 
| [63] | BASCIANO H, FEDERICO L, ADELI K.Fructose, insulin resistance, and metabolic dyslipidemia[J]. Nutrition & Metabolism, 2005, 2(1): 5. Doi:10.1186/1743-7075-2-5. | 
| [64] | RUTLEDGE A C, ADELI K.Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms[J]. Nutrition Reviews, 2007, 65(suppl 1): S13-S23. | 
| [65] | 吕海鹏, 谷记平, 林智, 等. 普洱茶的化学成分及生物活性研究进展[J]. 茶叶科学, 2007, 27(1): 8-18. | 
| [66] | YANG D-J, HWANG L S.Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea[J]. Journal of Chromatography A, 2006, 1119(1): 277-284. | 
| [67] | 陈智雄, 齐桂年, 邹瑶, 等. 黑茶调节脂质代谢的物质基础及机理研究进展[J]. 茶叶科学, 2013, 33(3): 242-252. | 
| [68] | KUHN D J, BURNS A C, KAZI A, et al.Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2004, 1682(1): 1-10. | 
| [69] | KAUL D, SIKAND K, SHUKLA A.Effect of green tea polyphenols on the genes with atherosclerotic potential[J]. Phytotherapy Research, 2004, 18(2): 177-179. | 
| [70] | HARDIE D G.AMPK: positive and negative regulation, and its role in whole-body energy homeostasis[J]. Current Opinion in Cell Biology, 2015, 33: 1-7. | 
| [71] | XIAO B, SANDERS M J, UNDERWOOD E, et al.Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011, 472(7342): 230-233. | 
| [72] | ZHOU J, FARAH B L, SINHA R A, et al.Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance[J]. PloS One, 2014, 9(1): e87161. Doi:10.1371/journal.pone.0087161. | 
| [73] | WAY T-D, LIN H-Y, KUO D-H, et al.Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(12): 5257-5264. | 
| [74] | HUANG H-C, LIN J-K.Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet[J]. Food & Function, 2012, 3(2): 170-177. | 
| [75] | LONG Y C, ZIERATH J R.AMP-activated protein kinase signaling in metabolic regulation[J]. The Journal of Clinical Investigation, 2006, 116(7): 1776-1783. | 
| [76] | HARDIE D G, ROSS F A, HAWLEY S A.AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 251-262. | 
| [77] | 傅冬和, 刘仲华, 黄建安, 等. 茯砖茶降脂功能成分研究[J]. 茶叶科学, 2012, 32(3): 217-223. | 
| [78] | WANG S, MOUSTAID-MOUSSA N, CHEN L, et al.Novel insights of dietary polyphenols and obesity[J]. The Journal of Nutritional Biochemistry, 2014, 25(1): 1-18. | 
| [79] | CAO H, HININGER-FAVIER I, KELLY M A, et al.Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet[J]. Journal of Agricultural and Food Chemistry, 2007, 55(15): 6372-6378. | 
| [80] | WATTS J L.Genetic dissection of polyunsaturated fatty acid synthesis in caenorhabditis elegans[C]. Proceedings of the National Academy of Sciences, 2002, 99(9): 5854-5859. | 
| [81] | KNIAZEVA M, CRAWFORD Q T, SEIBER M, et al.Monomethyl branched-chain fatty acids play an essential role in caenorhabditis elegans development[J]. PLoS Biology, 2004, 2(9): e257. | 
| [82] | HODSON L, FIELDING B A.Stearoyl-CoA desaturase: rogue or innocent bystander?[J]. Progress in Lipid Research, 2013, 52(1): 15-42. | 
| [83] | NTAMBI J M, MIYAZAKI M.Regulation of stearoyl-CoA desaturases and role in metabolism[J]. Progress in Lipid Research, 2004, 43(2): 91-104. | 
| [84] | JEON T-I, OSBORNE T F.SREBPs: metabolic integrators in physiology and metabolism[J]. Trends in Endocrinology & Metabolism, 2012, 23(2): 65-72. | 
| [85] | BROCK T J, WATTS J L.Fatty acid desaturation and the regulation of adiposity in caenorhabditis elegans[J]. Genetics, 2007, 176(2): 865-875. | 
| [86] | NTAMBI J M, MIYAZAKI M, STOEHR J P, et al.Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity[C]. Proceedings of the National Academy of Sciences, 2002, 99(17): 11482-11486. | 
| [87] | BROCK T J, WATTS J L.Genetic regulation of unsaturated fatty acid composition in C. elegans[J]. PLoS Genetics, 2006, 2(7): e108. Doi:10.1371/journal.pgen.0020108. | 
| [88] | VAN GILST M R, HADJIVASSILIOU H, JOLLY A, et al. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans[J]. PLoS Biol, 2005, 3(2): e53. Doi:10.1371/journal.pbio.0030053. | 
| [89] | LIANG B, FERGUSON K, KADYK L, et al.The role of nuclear receptor NHR-64 in fat storage regulation in caenorhabditis elegans[J]. PloS One, 2010, 5(3): e9869. Doi:10.1371/journal.pone.0009869. | 
| [1] | TANG Haikun, ZHANG Lanjun, ZHANG Panpan, LIU Benying. Research Progress on Chemical Constituents and Biological Activities of Alkaloids in Tea [J]. Journal of Tea Science, 2025, 45(5): 727-741. | 
| [2] | TU Yiyi, ZHANG You, XU Ting, CHEN Junjie, WANG Yuchun, LÜ Wuyun. Loop-mediated Isothermal Amplification-based Detection of Colletotrichum camelliae [J]. Journal of Tea Science, 2025, 45(5): 770-782. | 
| [3] | JIANG Li, LI Duojiao, HU Xinrong, SHEN Yingzi, ZHENG Zhaisheng, WENG Xiaoxing, LIU Shujing, BIAN Xiaodong, YUAN Ming'an, CHEN Xuan. Effects of Different Cultivation Patterns on Physiological and Biochemcial Characteristics of New Shoots in Seed-Leaf Dual-Purpose Tea Plants [J]. Journal of Tea Science, 2025, 45(5): 783-794. | 
| [4] | WANG Kairong, ZHANG Longjie, LIANG Yuerong, LI Xiaoxiang, ZHENG Xinqiang. Identification and Classification of Tea Leaf Color and Establishment of A Tea Leaf Color System [J]. Journal of Tea Science, 2025, 45(5): 795-807. | 
| [5] | LI Jing, HU Xinlong, TANG Huishan, GUO Jinling, HU Guangcan, FENG Depin, QIU Fangfang, WANG Mingle. Integrated Sensory Evaluation and Metabolomics Analysis of the Quality Characteristics of Yihong Black Tea with Different Levels of Tenderness [J]. Journal of Tea Science, 2025, 45(5): 808-820. | 
| [6] | GUO Yu, XIAO Liuyu, DU Qiuyi, TIAN Ye, HAN Yu. Study on Comprehensive Optimization of the Extraction Process and Emulsion Loading System of Water-extracted Polysaccharides from Qingzhuan Tea and Alkali-extracted Polysaccharides from Tea Residue [J]. Journal of Tea Science, 2025, 45(5): 821-840. | 
| [7] | SU Lin, HUANG Zihao, SUN Dan, CHEN Jinhua, ZHENG Yajie, LU Ying. Study on the Hypoglycemic Effects of Major Compounds in White Tea Based on Network Pharmacology and Zebrafish Model [J]. Journal of Tea Science, 2025, 45(5): 841-851. | 
| [8] | WANG Yonghui, WANG Duofeng, LI Xuemin, SHI Tianbin, WU Lidong, LIU Zaiguo, ZHANG Guangzhong, ZHAO Fengyun. Study on the Physicochemical Components and in Vitro Antioxidant Differences of Green Tea from Longnan, Gansu and Jinhua, Zhejiang [J]. Journal of Tea Science, 2025, 45(5): 852-864. | 
| [9] | CHEN Junrui, HU Junming, SHI Yuanzhi, WEI Xianghua, SONG Chuankui, ZHANG Junhui, ZHENG Fuhai, SUO Guangli. The Effects of Biochar-based Fertilizer on the Physical Stability of Organic Carbon in Soil Aggregates of Tea Gardens [J]. Journal of Tea Science, 2025, 45(5): 865-878. | 
| [10] | LI Bing, ZHU Yong, XIA Chenglong, LI Feilong, CAI Zhenyang, WU Hao. Lightweight Online Sorting Method of Milled Tea Based on Improved YOLOv5s [J]. Journal of Tea Science, 2025, 45(5): 879-897. | 
| [11] | MENG Chao, LIANG Tao, ZHANG Xia, WANG Wanhong, DONG Huanglin, LI Ming. Research on Tea Light Complementary Mode Based on Tea Planting and Photovoltaic Power Generation [J]. Journal of Tea Science, 2025, 45(5): 898-908. | 
| [12] | ZHOU Yide, CHEN Jialin, WU Junmei, ZHAO Hongbo, SUN Binmei, LIU Shaoqun, ZHENG Peng. Nitrogen Metabolism Genes in Tea Plant: Research Progress on the Environmental Stress Adaptation Mechanism and Breeding Application [J]. Journal of Tea Science, 2025, 45(4): 545-558. | 
| [13] | SUN Mengzhen, HU Zhihang, YANG Kaixin, ZHANG Jiaqi, ZHANG Nan, XIONG Aisheng, LIU Hui, ZHUANG Jing. Identification of Circadian Clock CsLUX Gene and Its Effects on Photosynthetic Characteristics in Tea Plants [J]. Journal of Tea Science, 2025, 45(4): 559-570. | 
| [14] | MENG Zhaona, Fida Hussain Magsi, ZHAO Dongxiang, ZHOU You, LI Jianlong, NONG Hongqiu, LONG Yaqin, ZHAO Yuanyan, HUANG Liyun, BIAN Lei, LI Zhaoqun, LUO Zongxiu, XIU Chunli, FU Nanxia, CHEN Zongmao, CAI Xiaoming. Investigation on the Helopeltis (Hemiptera) Species in Tea Gardens of China [J]. Journal of Tea Science, 2025, 45(4): 615-624. | 
| [15] | SUN Yu, ZHOU Li, ZHANG Xinfu, SUN Hezhi. Determination of 20 Phthalate Acid Esters in Tea Leaves by GC-MS/MS [J]. Journal of Tea Science, 2025, 45(4): 625-636. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
										
  | 
								||