Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (6): 681-691.doi: 10.13305/j.cnki.jts.2019.06.007
Previous Articles Next Articles
CHEN Linbo1,2, XIA Lifei1, LIU Yue1, SUN Yunnan1, JIANG Huibing1, TIAN Yiping1, CHEN Liang2,*
Received:
2019-03-04
Revised:
2019-05-25
Online:
2019-12-15
Published:
2019-12-24
CLC Number:
CHEN Linbo, XIA Lifei, LIU Yue, SUN Yunnan, JIANG Huibing, TIAN Yiping, CHEN Liang. Screening of miRNA Related to Anthocyanin Synthesis in Tea Cultivar ‘Zijuan’ Based on High Throughput Sequencing[J]. Journal of Tea Science, 2019, 39(6): 681-691.
[1] | Sun F, Guo G, Du J, et al.Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2014, 14(1): 142. DOI: 10.1186/1471-2229-14-142. |
[2] | Baulcombe D.RNA silencing in plants[J]. Nature, 2004, 431: 356-363. |
[3] | Gou J Y, Felippes F F, Liu C J, et al.Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-Targeted SPL transcription factor[J]. The Plant Cell, 2011, 23(4): 1512-1522. |
[4] | Ang G, Jun Y, Gu Y, et al.Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 415-427. |
[5] | Hsteh L C, LIN C I, Shih C C, et al.Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing[J]. Plant Physiology, 2009, 151(4): 2120-2132. |
[6] | Wang L, Zeng H Q, Song J, et al.miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis[J]. Plant Science, 2015, 238: 273-285. |
[7] | Jia X Y, Shen J, Liu H, et al.Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato[J]. Planta, 2015, 242(1): 283-293. |
[8] | Jiang X L, Huang K Y, Zheng G S, et al.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis[J]. Plant Science, 2018, 270: 209-220. |
[9] | Cui X, Wang Y X, Liu Z W, et al.Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis[J].Functional & Integrative Genomics, 2018, 18(5): 489-503. |
[10] | Punyasiri PAN, Abeysinghe ISB, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch. Biochem. Biophys, 2004. 431(1): 22-30. |
[11] | Singh K, Rani A, Kuma S, et al.An early gene of flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis)[J]. Tree Physiol, 2008, 28(9): 1349-1356. |
[12] | Lv H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities[J]. Journal of Functional Foods, 2015, 17: 449-458. |
[13] | Shen J Z, Zou Z W, Zhang X Z, et al.Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant(Camellia sinensis L.) cultivars[J]. Horticulture Research, 2018, 5(1): 7. DOI: 10.1038/s41438-017-0010-1. |
[14] | 费旭元, 林智, 梁名志, 等. 响应面法优化“紫娟”茶中花青素提取工艺的研究[J]. 茶叶科学, 2012, 32(3): 197-202. |
[15] | 吕海鹏, 梁名志, 张悦, 等. 特异茶树品种“紫娟”不同茶产品主要化学成分及其抗氧化活性分析[J]. 食品科学, 2016, 37(12): 122-127. |
[16] | Wen M, Shen Y, Shi S H, et al.miREvo: An Integrative microRNA evolutionary analysis platform for next-generation sequencing experiments[J]. BMC Bioinformatics, 2012, 13(1): 140. DOI: 10.1186/1471-2105-13-140. |
[17] | Friedlander M R, Mackowiak S D, Li N, et al.miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012, 40(1): 37-52. |
[18] | Wu H J, Ma Y K, Chen T, et al.PsRobot: a web-based plant small RNA meta-analysis toolbox[J]. Nucleic Acids Research, 2012, 40(W1): W22-W28. DOI: 10.1093/nar/gks554. |
[19] | 蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析[J]. 植物遗传资源学报, 2018, 19(5): 967-978. |
[20] | Wang L, Feng Z, Wang X, et al.DEGseq: an R package for identifying deferentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138. |
[21] | 谢小芳, 添先凤, 江昌俊, 等. 茶树低温胁迫下microRNA实时定量PCR内参基因的筛选[J]. 茶叶科学, 2015, 35(6): 596-604. |
[22] | Zhang Y, Zhu X J, Chen X, et al.Identification and characterization of cold-responsive microRNAs in tea plant (Camelliasinensis) and their targets using high-throughput sequencing and degradome analysis[J]. BMC Plant Biology, 2014, 14: 271. DOI:10.1186/s12870-014-0271-x. |
[23] | Chen J L, Zheng Y, Qin L, et al.Identification of miRNAs and their targets through high-through put sequencing and degradome analysis in male and female Asparagus officinalis[J]. BMC Plant Biology, 2016, 16(1): 80. DOI: 10.1186/s12870-016-0770-z. |
[24] | Mecchia M A, Debernardi J M, Rodriguez R E, et al.MicroRNA miR396 and RDR6 synergistically regulate leaf development[J]. Mechanisms of Development, 2013, 130(1): 2-13. |
[25] | Zhang W, Xie Y, Xu L, et al.Identification of microRNAs and their target genes explores miRNA-mediated regulatory network of cytoplasmic male sterility occurrence during anther development in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, 2016, 7: 1054. DOI: 10.3389/fpls.2016.01054. |
[26] | Yang X, Zhao Y, Xie D, et al.Identification and functional analysis of microRNAs involved in the anther development in cotton genic male sterile line Yu98-8A[J]. International Journal of Molecular Sciences, 2016, 17(10): 1677. DOI: 10.3390/ijms17101677. |
[27] | Liu J, Yuan Y, Wang Y L, et al.Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica[J]. Royal Society of Chemistry, 2017, 7: 35426-35437. |
[28] | Sun Y, Qiu Y, Duan M, et al.Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing[J]. Molecular Genetics & Genomics, 2017, 292(1): 215-229. |
[29] | Shen E M, Singh S K, Ghosh J S, et al.The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis[J]. Scientific Reports, 2017, 7: 43027. DOI: 10.1038/srep43027. |
[30] | Liu N, Tu L, Wang L, et al.MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton[J]. BMC Plant Biology, 2017, 17: 7. DOI: 10.1186/s12870-016-0969-z. |
[31] | Yang F X, Cai J, Yang Y, et al.Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis[J]. Plant Cell Tiss Organ Cult, 2013, 115(2): 159-167. |
[32] | Baksa I, Nagy T, Barta E, et al.Identification of Nicotiana benthamiana microRNAs and their targets using high through put sequencing and degradome analysis[J]. BMC Genomics, 2015, 16(1): 1025. DOI: 10.1186/s12864-015-2209-6. |
[33] | Wang L, Du H Y, Ta-na W Y. Genome-wide identification of MicroRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high-through put sequencing[J]. Frontiers in Plant Science, 2016, 7: 1632. DOI: 10.3389/fpls.2016.01632. |
[1] | HUANG Danjuan, TAN Rongrong, CHEN Xun, WANG Hongjuan, GONG Ziming, WANG Youping, MAO Yingxin. Transcriptome Analysis of Root Induced by Aluminum in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(5): 506-520. |
[2] | LIU Yanli, MA Linlong, CAO Dan, JIN Xiaofang, FENG Lin, GONG Ziming. Identification and Bioinformatic Analysis of Pectin Acetylesterases from Tea Plant [J]. Journal of Tea Science, 2019, 39(5): 521-529. |
[3] | FAN Yangen, ZHAO Xiuxiu, WANG Hanyue, TIAN Yueyue, XIANG Qinzeng, ZHANG Lixia. Study on Physiological Characteristics of Leaves with Different Colors of ‘Huangjinya’ [J]. Journal of Tea Science, 2019, 39(5): 530-536. |
[4] | GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing. Genome-wide Identification and Expression Analysis of SRO Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2019, 39(4): 392-402. |
[5] | ZHENG Shizhong, JIANG Shengtao, LIU Wei, CHEN Meixia, LIN Yuling, LAI Zhongxiong, LIN Jinke. Cloning and Functional Analysis of the CsMYB Promoter In Tea Plant (Camellia sinensis L.) [J]. Journal of Tea Science, 2018, 38(6): 580-588. |
[6] | PANG Dandan, ZHANG Fen, ZHANG Yazhen, WEI Kang, WANG Liyuan, CHENG Hao. Research Advance on Biosynthesis, Regulation and Function of Anthocyanins in Tea Plant [J]. Journal of Tea Science, 2018, 38(6): 606-614. |
[7] | SHAN Ruiyang, LIN Zhenghe, CHEN Zhihui, ZHONG Qiusheng, YOU Xiaomei, CHEN Changsong. Molecular Cloning and Expression Analysis of Cytochrome P450 CYP71A26 and CYP71B34 Genes in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(5): 450-460. |
[8] | GAN Yudi, SUN Kang, LI Huijuan, DU Zhongying, ZHAO Zhen, PANG Xing, LI Xinghui, CHEN Xuan. Effect of Two Prokaryotic Expressed Vectors on the Activity of PPO from Camellia sinensis [J]. Journal of Tea Science, 2018, 38(4): 396-405. |
[9] | RAN Wei, ZHANG Jin, ZHANG Xin, LIN Songbo, SUN Xiaoling. Infestation of Ectropis obliqua Affects the Catechin Metabolism in Tea Plants [J]. Journal of Tea Science, 2018, 38(2): 133-139. |
[10] | YE Xiaoli, PAN Junting, ZHU Jiaojiao, SHU Zaifa, CUI Chuanlei, XING Anqi, NONG Shouhua, ZHU Xujun, FANG Wanping, WANG Yuhua. Cloning and Expression Analysis of Small GTPase (CsRAC5) under Cold Stress in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(2): 146-154. |
[11] | ZHANG Yongheng, WANG Siqing, CHEN Jiangfei, WANG Weidong, ZHOU Tianshan, XIAO Bin, YANG Yajun, YU Youben. Cloning and Expression Analysis of CsSnRK2.1 and CsSnRK2.2 Genes in Tea Plant (Camellia sinensis) under Abiotic Stress [J]. Journal of Tea Science, 2018, 38(2): 183-192. |
[12] | YU Xinlei, AI Yujie, QU Fengfeng, AI Zeyi, LIU Shuyuan, CHEN Yuqiong, NI Dejiang. Metabolomics Application in the Study of Tea Quality Formation [J]. Journal of Tea Science, 2018, 38(1): 20-32. |
[13] | LIN Weidong, CHEN Zhidan, SUN Weijiang, YANG Ruxing. Analysis of Genetic Diversity of Fujian Tea Varieties by SCoT Markers [J]. Journal of Tea Science, 2018, 38(1): 43-57. |
[14] | SHEN Wei, TENG Ruimin, LI Hui, LIU Zhiwei, WANG Yongxin, WANG Wenli, ZHUANG Jing. Cloning of a MADS-box Transcription Factor Gene from Camellia sinensis and its Response to Abiotic Stresses [J]. Journal of Tea Science, 2017, 37(6): 575-585. |
[15] | LI Hailin, WANG Liyuan, CHENG Hao, WEI Kang, RUAN Li, WU Liyun. The Effects of Nitrogen Supply on Agronomic Traits and Chemical Components of Tea Plant [J]. Journal of Tea Science, 2017, 37(4): 383-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|