Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (6): 869-886.doi: 10.13305/j.cnki.jts.2024.06.008
• Research Paper • Next Articles
XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle*, CHEN Yuqiong*
Received:
2024-10-29
Revised:
2024-11-20
Online:
2024-12-15
Published:
2025-01-08
CLC Number:
XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle, CHEN Yuqiong. Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis[J]. Journal of Tea Science, 2024, 44(6): 869-886.
[1] Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan province, PR China[J]. Chemosphere, 2003, 52(9): 1475-1482. [2] Cai H M, Zhu X H, Peng C Y, et al.Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China[J]. Ecotoxicology and Environmental Safety, 2016, 131: 14-21. [3] Das S, de Oliveira L M, da Silva E, et al. Fluoride concentrations in traditional and herbal teas: health risk assessment[J]. Environmental Pollution, 2017, 231: 779-784. [4] Barbier O, Arreola-Mendoza L, Del Razo L M. Molecular mechanisms of fluoride toxicity[J]. Chemico-Biological Interactions, 2010, 188(2): 319-333. [5] Luo J L, Hu K, Qu F F, et al.Metabolomics analysis reveals major differential metabolites and metabolic alterations in tea plant leaves ( [6] Yang X, Yu Z, Zhang B B, et al.Effect of fluoride on the biosynthesis of catechins in tea [ [7] 邢安琪, 武子辰, 徐晓寒, 等. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. Xing A Q, Wu Z C, Xu X H, et al.Research advances of fluoride accumulation mechanisms in tea plants ( [8] Yang J, Liu C S, Li J L, et al.Critical review of fluoride in tea plants ( [9] Niu H L, Peng C Y, Zhu X D, et al.Positron-emitting tracer imaging of fluoride transport and distribution in tea plant[J]. Journal of the Science of Food and Agriculture, 2020, 100(8): 3554-3559. [10] Luo J L, Ni D J, Li C L, et al.The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions[J]. Environmental Pollution, 2021, 270: 116283. doi: 10.1016/j.envpol.2020.116283. [11] Lu Y, Guo W F, Yang X Q.Fluoride content in tea and its relationship with tea quality[J]. Journal of Agricultural and Food Chemistry, 2004, 52(14): 4472-4476. [12] Peaucelle A, Braybrook S A, Le Guillou L, et al.Pectin-induced changes in cell wall mechanics underlie organ initiation in [13] Wolf S.Cell wall signaling in plant development and defense[J]. Annual Review of Plant Biology, 2022, 73: 323-353. [14] Wang D D, Kanyuka K, Papp-Rupar M.Pectin: a critical component in cell-wall-mediated immunity[J]. Trends in Plant Science, 2023, 28(1): 10-13. [15] Micheli F.Pectin methylesterases: cell wall enzymes with important roles in plant physiology[J]. Trends in Plant Science, 2001, 6(9): 414-419. [16] Du J, Anderson C T, Xiao C W.Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development[J]. Nature Plants, 2022, 8(4): 332-340. [17] Hongo S, Sato K, Yokoyama R, et al.Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the [18] Nguyen H P, Jeong H Y, Jeon S H, et al.Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels[J]. Journal of Plant Physiology, 2017, 208: 17-25. [19] Xue C, Guan S C, Chen J Q, et al.Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening[J]. BMC Plant Biology, 2020, 20(1): 13. doi: 10.1186/s12870-019-2225-9. [20] Li Z X, Wang C, Long D, et al.Genome-wide identification, bioinformatics characterization and functional analysis of pectin methylesterase inhibitors related to low temperature-induced juice sac granulation in navel orange ( [21] Li Z X, Wu L M, Wang C, et al.Characterization of pectin methylesterase gene family and its possible role in juice sac granulation in navel orange ( [22] Del Corpo D, Fullone M R, Miele R, et al.AtPME17 is a functional [23] Liu N N, Sun Y, Pei Y K, et al.A pectin methylesterase inhibitor enhances resistance to [24] Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterifcation and organic acids of root tips involve in aluminum tolerance in [25] Huang D J, Mao Y X, Guo G Y, et al.Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant ( [26] Li B, Wang H, He S, et al.Genome-wide identification of the [27] Wan Q, Xu R K, Li X H.Proton release by tea plant ( [28] Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319. [29] Paysan-Lafosse T, Blum M, Chuguransky S, et al.InterPro in 2022[J]. Nucleic Acids Research, 2023, 51(D1): D418-D427. [30] Gao Q J, Tong W, Li F D, et al.TPIA2: an updated tea plant information archive for [31] Chen C J, Chen H, Zhang Y, et al.2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [32] Kumar S, Stecher G, Li M, et al.MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. [33] 李庆会, 李睿, 温晓菊, 等. 氟胁迫条件下茶树叶部实时荧光定量PCR分析中内参基因的筛选与验证[J]. 茶叶科学, 2024, 44(1): 27-36. Li Q H, Li R, Wen X J, et al.Selection and validation of internal reference genes for qRT-PCR analysis under fluoride stress in [34] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. [35] Jach G, Binot E, Frings S, et al.Use of red fluorescent protein from [36] 杨双, 阮燕晔, 樊金娟, 等. 一种简易的拟南芥幼苗微量DNA提取方法[J]. 沈阳农业大学学报, 2005, 36(1): 99-100. Yang S, Ruan Y Y, Fan J J, et al.A rapid-simple method of trace DNA extraction from a single plant of [37] Pelloux J, Rustérucci C, Mellerowicz E J.New insights into pectin methylesterase structure and function[J]. Trends in Plant Science, 2007, 12(6): 267-277. [38] Huang Y C, Wu H C, Wang Y D, et al.PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement[J]. Plant Physiology, 2017, 174(2): 748-763. [39] Xu Z J, Yang M, Li Z Y, et al.Tissue-specific pectin methylesterification and pectin methylesterase activities play a role in lettuce seed germination[J]. Scientia Horticulturae, 2022, 301: 111134. doi: 10.1016/j.scienta.2022.111134. [40] Pei Y Y, Wang Y K, Wei Z Z, et al.Pectin methylesterase inhibitors GhPMEI53 and AtPMEI19 improve seed germination by modulating cell wall plasticity in cotton and [41] Ren C, Kermode A R.An increase in pectin methylesterase activity accompanies dormancy breakage and germination of yellow cedar seeds[J]. Plant Physiology, 2000, 124(1): 231-242. [42] Geng X Y, Horst W J, Golz J F, et al. [43] Yang X Y, Zeng Z H, Yan J Y, et al.Association of specific pectin methylesterases with Al-induced root elongation inhibition in rice[J]. Physiologia Plantarum, 2013, 148(4): 502-511. [44] Zhou Y J, Li R M, Wang S J, et al.Overexpression of |
[1] | LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(4): 585-597. |
[2] | LONG Lu, TANG Dandan, CHEN Wei, TAN Liqiang, CHEN Shengxiang, TANG Qian. Identification and Expression Pattern Analysis of STOP Gene Family in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(3): 386-398. |
[3] | YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong. Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’ [J]. Journal of Tea Science, 2024, 44(3): 411-430. |
[4] | ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong. Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(2): 175-192. |
[5] | HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na. The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants [J]. Journal of Tea Science, 2024, 44(2): 207-218. |
[6] | LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong. Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves [J]. Journal of Tea Science, 2024, 44(1): 27-36. |
[7] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[8] | MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin. Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2023, 43(5): 607-620. |
[9] | TANG Ziyi, DU Yue, YANG Hongbin, LI Xinghui, YU Youben, WANG Weidong. Changes of Endogenous Hormone Contents and Expression Analysis of Related Genes in Leaves of Tea Plants Under Heat and Drought Stresses [J]. Journal of Tea Science, 2023, 43(4): 489-500. |
[10] | LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan. Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring [J]. Journal of Tea Science, 2023, 43(3): 335-348. |
[11] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[12] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[13] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
[14] | GAI Shujie, WANG Yixiong, LI Lan, LIU Shuoqian, LI Yinhua, CHENG Xiao, XIA Mao, LIU Zhonghua, ZHOU Zhi. Research Progress of Tea Plant (Camellia sinensis) Growth under Light Regulation [J]. Journal of Tea Science, 2022, 42(6): 753-767. |
[15] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|