Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (2): 159-172.doi: 10.13305/j.cnki.jts.2023.02.002
• Research Paper • Previous Articles Next Articles
CHEN Zhenyan1, ZHANG Xiangqin1, CHEN Lan1, XIE Siyi1, LIU Shuoqian1,2,*, TIAN Na1,2,*
Received:
2023-01-17
Revised:
2023-03-04
Online:
2023-04-15
Published:
2023-05-05
CLC Number:
CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis[J]. Journal of Tea Science, 2023, 43(2): 159-172.
[1] | Mildvan A S, Xia Z, Azurmendi H F, et al.Structures and mechanisms of Nudix hydrolases[J]. Archives of Biochemistry and Biophysics, 2005, 433(1): 129-143. |
[2] | Bessman M J, Frick D N, O'Handley S F. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes[J]. The Journal of Biological Chemistry, 1996, 271(41): 25059-25062. |
[3] | McLennan A G. The Nudix hydrolase superfamily[J]. Cellular and Molecular Life Sciences, 2006, 63(2): 123-143. |
[4] | 和华杰. 桃PpNUDX8基因响应干旱胁迫的分子机制研究[D]. 泰安: 山东农业大学, 2022. |
He H J.Molecular mechanism ofPpNUDX8gene response to drought stress in peach [D]. Tai'an: Shandong Agricultural University, 2022. | |
[5] | Ogawa T, Yoshimura K, Miyake H, et al.Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1412-1424. |
[6] | Dong S M, Wang Y C.Correction: Nudix effectors: a common weapon in the arsenal of plant pathogens[J]. Plos Pathogens, 2016, 12(10): e1005970. doi: 10.1371/journal.ppat.1005970. |
[7] | Ogawa T, Ishikawa K, Harada K, et al.Overexpression of an ADP-ribose pyrophosphatase,AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants[J]. The Plant Journal, 2009, 57(2): 289-301. |
[8] | Ishikawa K, Yoshimura K, Harada K, et al.AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling[J]. Plant Physiology, 2010, 152(4): 2000-2012. |
[9] | 尹虹.AtNUDX6/7基因缺失型拟南芥基因芯片表达谱的生物信息学分析[J]. 锦州医科大学学报, 2021, 42(5): 30-35. |
Yin H.Bioinformatic analysis of expression profiles of gene chip of arabidopsis withAtNUDX6/7gene deletion[J]. Journal of Jinzhou Medical University, 2022, 42(5): 30-35. | |
[10] | Ogawa T, Uedo Y, Yoshimura K, et al.Comprehensive analysis of cytosolic Nudix hydrolases inArabidopsis thaliana[J]. The Journal of Biological Chemistry, 2005, 280(26): 25277-25283. |
[11] | 窦玲玲, 孙亚如, 赵琴, 等. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
Dou L L, Sun Y R, Zhao Q, et al.Genome-wide identification and expression analysis ofNudixgene family in upland cotton[J]. Cotton Science, 2021, 33(2): 112-123. | |
[12] | Bergman M E, Bhardwaj M, Phillips M A.Cytosolic geraniol and citronellol biosynthesis require a Nudix hydrolase in rose scented geranium (Pelargonium graveolens)[J]. The Plant Journal, 2021, 107(2): 493-510. |
[13] | 黄河. 甘菊响应盐诱导的分子机理研究[D]. 北京: 北京林业大学, 2012. |
Huang H.The molecular mechanism of salt response inChrysanthemum lavandulifolium(Fisch. ex Trautv.) Makino [D]. Beijing: Beijing Forestry University, 2012. | |
[14] | 常玮, 王娟, 于洋, 等. 大豆NUDX基因家族全基因组分析[J]. 西北农林科技大学学报(自然科学版), 2018, 46(9): 27-34. |
Chang W, Wang J, Yu Y, et al.Genome-wide analysis of soybeanNUDXgene family[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(9): 27-34. | |
[15] | Wang P P, Wang Z K, Guan L, et al.Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. Journal of Integrative Agriculture, 2022, 21(1): 91-112. |
[16] | 庞静怡. 茶树核苷水解酶CsNUDX1基因与香叶醇生物合成的研究[D]. 合肥: 安徽农业大学, 2018. |
Pang J Y.Studies on tea (Camellia sinensisvar.sinensis) nucleoside hydrolaseCsNUDX1gene and geraniol biosynthesis [D]. Hefei: Anhui Agricultural University, 2018. | |
[17] | Newman L, Duffus A L J, Lee C. Using the free program MEGA to build phylogenetic trees from molecular data[J]. The American Biology Teacher, 2016, 78(7): 608-612. |
[18] | Chen C J, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
[19] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408. |
[20] | Yoshimura K, Shigeoka S.Versatile physiological functions of the Nudix hydrolase family in Arabidopsis[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(3): 354-366. |
[21] | 练珊珊, 张宝会, 姚新转, 等. 茶树CsIQD基因家族的鉴定和表达模式分析[J]. 特产研究, 2021, 43(5): 26-34. |
Lian S S, Zhang B H, Yao X Z, et al.Identification and expression pattern analysis of CsIDQ gene family inCamellia sinensisL.[J]. Special Wild Economic Animal and Plant Research, 2021, 43(5): 26-34. | |
[22] | Xu G X, Guo C C, Shan H Y, et al.Divergence of duplicate genes in exon-intron structure[J]. PNAS, 2012, 109(4): 1187-1192. |
[23] | Ding Y Q, Wang Y, Qiu C, et al.Alternative splicing in tea plants was extensively triggered by drought, heat and their combined stresses[J]. PeerJ, 2020, 8(15): e8258. doi: 10.7717/peerj.8258. |
[24] | Sun J, Chen S L, Dai S X, et al.Ion flux profiles and plant ion homeostasis control under salt stress[J]. Plant Signaling & Behavior, 2009, 4(4): 261-264. |
[25] | 彭玉华. 甘菊耐盐性分析及DlBADH基因启动子转化菊花试验[D]. 北京: 北京林业大学, 2011. |
Peng Y H.Salt-tolerance analysis ofChrysanthemum lavandlifoliumand transformation ofDlBADHpromoters to chrysanthemum [D]. Beijing: Beijing Forestry University, 2011. | |
[26] | 汪新文. 茉莉酸参与植物逆境胁迫的研究进展[J]. 安徽农学通报, 2008, 14(6): 29-35, 24. |
Wang X W.Research progress of jasminic acid participating in plant adversity stress[J]. Anhui Agricultural Science Bulletin, 2008, 14(6): 29-35, 24. | |
[27] | 邢勇翔. 外源茉莉酸甲酯处理影响玫瑰抗旱性与花香合成的机理研究[D]. 扬州: 扬州大学, 2021. |
Xing Y X.Study on the affecting mechanism of drought resistance and floral fragrance synthesis by treatment of exogenous methyl jasmonate inRosa rugosa[D]. Yangzhou: Yangzhou University, 2021. | |
[28] | Magnard J L, Roccia A, Caissard J C, et al.Biosynthesis of monoterpene scent compounds in roses[J]. Science, 2015, 349(6243): 81-83. |
[29] | 臧姝. 玫瑰花香成分生物合成相关基因RrNUDX1和RrDXR的功能验证研究[D]. 扬州: 扬州大学, 2017. |
Zang S.Functional verification ofRrNUDX1andRrDXRgene related to biosynthesis of floral constituents inRosa rugosa[D]. Yangzhou: Yangzhou University, 2017. |
[1] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[2] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
[3] | GAI Shujie, WANG Yixiong, LI Lan, LIU Shuoqian, LI Yinhua, CHENG Xiao, XIA Mao, LIU Zhonghua, ZHOU Zhi. Research Progress of Tea Plant (Camellia sinensis) Growth under Light Regulation [J]. Journal of Tea Science, 2022, 42(6): 753-767. |
[4] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[5] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[6] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[7] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[8] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[9] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[10] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[11] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[12] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[13] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[14] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[15] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|