[1] |
WU Y, DING L, XIA H, et al. Analysis of the major chemical compositions in Fuzhuan brick-tea and its effect on activities of pancreatic enzymes in vitro[J]. African Journal of Biotechnology, 2010, 9(40): 6748-6754.
|
[2] |
傅冬和, 刘仲华, 黄建安, 等. 茯砖茶加工过程中主要化学成分的变化[J]. 食品科学, 2008, 29(2): 64-67.
|
[3] |
ZHANG L, ZHANG Z-Z, ZHOU Y-B, et al. Chinese dark teas: Postfermentation, chemistry and biological activities[J]. Food Research International, 2013, 53(2): 600-607.
|
[4] |
LU C-H, HWANG L S.Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line[J]. Food Chemistry, 2008, 111(1): 67-71.
|
[5] |
FU D, RYAN E P, HUANG J, et al. Fermented Camellia sinensis,Fu Zhuan Tea, regulates hyperlipidemia and transcription factors involved in lipid catabolism[J]. Food Research International, 2011, 44(9): 2999-3005.
|
[6] |
龚受基. 六堡茶和茉莉花改善胰岛素抵抗功效及机制研究[D]. 长沙: 湖南农业大学, 2012: 49-79.
|
[7] |
彭静静. 六堡茶的降血脂功能性研究[D]. 南宁: 广西大学, 2012: 28-38.
|
[8] |
SKRZYPSKI M, KACZMAREK P, LE T, et al. Effects of orexin A on proliferation, survival, apoptosis and differentiation of 3T3-L1 preadipocytes into mature adipocytes[J]. FEBS Lett, 2012,586(23):4157-4164.
|
[9] |
CHANGSUK K, JUNGAE K, SEKWON K.Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes[J]. Food Chem Toxicol, 2009, 47(10): 2401-2406.
|
[10] |
GAO C-L, ZHU C, ZHAO Y-P, et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes[J]. Mol Cell Endocrinol, 2010, 320(1/2): 25-33.
|
[11] |
KERSHAW E E, FLIER J S.Adipose tissue as an endocrine organ[J]. J Clin Endocrinol Metab, 2004, 89(6): 2548-2556.
|
[12] |
CAPURSO C, CAPURSO A.From excess adiposity to insulin resistance: The role of free fatty acids[J]. Vascul Pharmacol, 2012, 57(2/4): 91-97.
|
[13] |
SUKHATME V P, CHAN B.Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence[J]. FEBS Lett, 2012, 586(16): 2389-2395.
|
[14] |
PAPAGIANNI M, AVRAMIDIS N.Lactococcus lactis as a cell factory: A twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation[J]. Enzyme Microb Technol, 2011, 49(2): 197-202.
|
[15] |
GUO X, LI H, XU H, et al. Glycolysis in the control of blood glucose homeostasis[J]. Acta Pharmaceutica Sinica B, 2012, 2(4): 358-367.
|
[16] |
CARPENTIER A C.Postprandial fatty acid metabolism in the development of lipotoxicity and type 2 diabetes[J]. Diabetes Metab, 2008, 34(2): 97-107.
|
[17] |
KOK B, BRINDLEY D N.Myocardial Fatty Acid metabolism and lipotoxicity in the setting of insulin resistance[J]. Heart Fail Clin, 2012, 8(4): 643-661.
|
[18] |
TUEI V C, HA J-S, HA C-E.Effects of human serum albumin complexed with free fatty acids on cell viability and insulin secretion in the hamster pancreatic -cell line HIT-T15[J]. Life Sci, 2011, 88(17): 810-818.
|
[19] |
FOSTER D W.The role of the carnitine system in human metabolism[J]. Ann N Y Acad Sci, 2004, 1033(1): 1-16.
|
[20] |
CHIU T T, JENSEN T E, SYLOW L, et al. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle[J]. Cell Signal, 2011, 23(10): 1546-1554.
|
[21] |
BERENGUER M, MARCHAND-BRUSTEL Y L, GOVERS R. GLUT4 molecules are recruited at random for insertion within the plasma membrane upon insulin stimulation[J]. FEBS Lett, 2010, 584(3): 537-542.
|
[22] |
WANG N, ZHANG D, MAO X, et al. Astragalus polysaccharides decreased the expression of PTP1B through relieving ER stress induced activation of ATF6 in a rat model of type 2 diabetes[J]. Mol Cell Endocrinol, 2009, 307(1): 89-98.
|
[23] |
张栩颜, 黄宇声, 刘冠萍, 等. 六堡茶对高脂血症小鼠血脂及脂质过氧化的影响[J]. 医学理论与实践, 2013, 26(5): 563-564.
|