茶叶科学 ›› 2025, Vol. 45 ›› Issue (5): 879-897.doi: 10.13305/j.cnki.jts.2025.05.008
李兵1,2, 朱勇1, 夏程龙1, 李飞龙1, 蔡振洋1, 吴昊1
收稿日期:
2025-01-17
修回日期:
2025-02-27
出版日期:
2025-10-15
发布日期:
2025-10-17
作者简介:
李兵,男,教授,主要从事茶叶加工装备、茶园机械方面的研究,libing@ahau.edu.cn
基金资助:
LI Bing1,2, ZHU Yong1, XIA Chenglong1, LI Feilong1, CAI Zhenyang1, WU Hao1
Received:
2025-01-17
Revised:
2025-02-27
Online:
2025-10-15
Published:
2025-10-17
摘要: 碾茶是生产抹茶的原料,是确保抹茶品质最重要的一环。对碾茶进行快速有效分选是提高成品碾茶品质的重要环节。针对目前碾茶分选环节中存在分选效率低、劳动强度大等问题,提出了一种基于碾茶检测的在线分选方法,搭建了碾茶在线分选试验平台。根据碾茶识别的实时性和轻量化需求,开发了一种基于YOLOv5s-EfficientNet-SimSPPF的碾茶识别模型,模型引入EfficientNet主干网络和SimSPPF模块,在保证识别精度的基础上提高了模型识别速度,缩小模型大小。该研究还提出了一种基于碾茶在线识别结果进行分选的控制算法,以及一种辅助算法,防止分选过程中对工业相机视场域边界上的碾茶进行低精确度的二次识别与二次定位。最后,设计了碾茶在线分选试验,对混合碾茶叶片和梗茎的样品分选平均精度达到97.0%。提出的碾茶在线分选方法可以满足碾茶在线分选的实际需要,可作为抹茶精加工和碾茶分选操作的有效工具,也可为其他农产品的在线识别和连续分选提供参考。
中图分类号:
李兵, 朱勇, 夏程龙, 李飞龙, 蔡振洋, 吴昊. 基于改进YOLOv5s的碾茶轻量化在线分选方法[J]. 茶叶科学, 2025, 45(5): 879-897. doi: 10.13305/j.cnki.jts.2025.05.008.
LI Bing, ZHU Yong, XIA Chenglong, LI Feilong, CAI Zhenyang, WU Hao. Lightweight Online Sorting Method of Milled Tea Based on Improved YOLOv5s[J]. Journal of Tea Science, 2025, 45(5): 879-897. doi: 10.13305/j.cnki.jts.2025.05.008.
[1] Patrício I D, Rieder R.Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review[J]. Computers and Electronics in Agriculture, 2018, 153: 69-81. doi: 10.1016/j.compag.2018.08.001. [2] Momin A M, Yamamoto K, Miyamoto M, et al.Machine vision based soybean quality evaluation[J]. Computers and Electronics in Agriculture, 2017, 140: 452-460. doi: 10.1016/j.compag.2017.06.023. [3] Wang F Y, Zheng J Y, Tian X C, et al.An automatic sorting system for fresh white button mushrooms based on image processing[J]. Computers and Electronics in Agriculture, 2018, 151: 416-425. doi: 10.1016/j.compag.2018.06.022. [4] Maganda N A M, Rodríguez D A I, Mier H Y, et al. Real-time embedded vision system for online monitoring and sorting of citrus fruits[J]. Electronics, 2023, 12(18): 3891. doi: 10.3390/electronics12183891. [5] Gan N, Wang Y J, Ren G X, et al.Design and testing of a machine-vision-based air-blow sorting platform for famous tea fresh leaves production[J]. Computers and Electronics in Agriculture, 2023, 214: 108334. doi: 10.1016/j.compag.2023.108334. [6] 吴江春, 王虎虎, 徐幸莲. 基于机器视觉的鸡胴体断翅快速检测技术[J]. 农业工程学报, 2022, 38(22): 253-261. Wu C J, Wang H H, Xu X L.Rapid detection technology for broken-winged broiler carcass based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(22): 253-261. [7] 左杰文, 彭彦昆, 李永玉, 等. 基于声学特性的西瓜糖度检测与分级系统研究[J]. 农业机械学报, 2022, 53(s1): 316-323. Zuo J W, Peng Y K, Li Y Y, et al.Watermelon sugar content detection and grading system based on acoustic characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(s1): 316-323. [8] 吕壮, 黄金, 兰梓溶, 等. 机器学习算法在食用植物油掺伪鉴别中的研究进展[J/OL]. 中国油脂, 2024: 1-12[2025-01-17]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.240160. Lü Z, Huang J, Lan Z R, et al. Research progress of machine learning algorithm in adulteration identification of edible vegetable oil [J/OL]. China Oils and Fats, 2024: 1-12[2025-01-17]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.240160. [9] Huang K Y, Cheng J F.A novel auto-sorting system for Chinese cabbage seeds[J]. Sensors, 2017, 17(4): 886. doi: 10.3390/s17040886. [10] Rezaei P, Hemmat A, Shahpari N, et al.Machine vision-based algorithms to detect sunburn pomegranate for use in a sorting machine[J]. Measurement, 2024, 232: 114682. doi: 10.1016/j.measurement.2024.114682. [11] Blasco J, Cubero S, Gómez-sanchís J, et al. Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision[J]. Journal of Food Engineering, 2008, 90(1): 27-34. [12] Tala T K, Hadjar O S, Naima K.Deep learning: systematic review, models, challenges, and research directions[J]. Neural Computing & Applications, 2023: 35(31): 23103-23124. [13] Gao X H W, Hui R, Tian Z M. Classification of CT brain images based on deep learning networks[J]. Computer Methods and Programs in Biomedicine, 2017, 138: 49-56. [14] Lee S H, Chan C S, Mayo S J, et al.How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 2017, 71: 1-13. doi: 10.1016/j.patcog.2017.05.015. [15] Yang Z H, Xu J C, Yang L, et al.Optimized dynamic monitoring and quality management system for post-harvest matsutake of different preservation packaging in cold chain[J]. Foods, 2022, 11(17): 26-46. [16] Xu J C, Yang Z H, Wang Z, et al.Flexible sensing enabled packaging performance optimization system (FS-PPOS) for lamb loss reduction control in E-commerce supply chain[J]. Food Control, 2023, 145: 109394. doi: 10.1016/j.foodcont.2022.109394. [17] Zhang H Y, Zuo X Y, Sun B Y, et al.Fuzzy-PID-based atmosphere packaging gas distribution system for fresh food[J]. Applied Sciences, 2023, 13(4): 2674. doi: 10.3390/app13042674. [18] Fu L S, Majeed Y, Zhang X, et al.Faster R-CNN-based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting[J]. Biosystems Engineering, 2020, 197: 245-256. doi: 10.1016/j.biosystemseng.2020.07.007. [19] Fan S X, Li J B, Zhang Y H, et al.On line detection of defective apples using computer vision system combined with deep learning methods[J]. Journal of Food Engineering, 2020, 286: 110102. doi: 10.1016/j.jfoodeng.2020.110102. [20] Subramanian P, Sankar S T.Detection of maturity stages of coconuts in complex background using Faster R-CNN model[J]. Biosystems Engineering, 2021, 202: 119-132. doi: 10.1016/j.biosystemseng.2020.12.002. [21] Jahanbakhshi A, Momeny M, Mahmoudi M, et al.Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks[J]. Energy Reports, 2021, 7: 5248-5256. doi: 10.1016/j.egyr.2021.08.028. [22] Wan S H, Goudos S.Faster R-CNN for multi-class fruit detection using a robotic vision system[J]. Computer Networks, 2020, 168: 107036. doi: 10.1016/j.comnet.2019.107036. [23] Lu Z H, Zhao M F, Luo J, et al.Design of a winter-jujube grading robot based on machine vision[J]. Computers and Electronics in Agriculture, 2021, 186: 106170. doi: 10.1016/j.compag.2021.106170. [24] Lu A G, Guo R X, Ma Q C, et al.Online sorting of drilled lotus seeds using deep learning[J]. Biosystems Engineering, 2022, 221: 118-137. doi: 10.1016/j.biosystemseng.2022.06.015. [25] Wen J, He J.Agricultural development driven by the digital economy: improved EfficientNet vegetable quality grading[J]. Frontiers in Sustainable Food Systems, 2024, 8: 1310042. doi: 10.3389/fsufs.2024.1310042. [26] 杨肖委, 沈强, 罗金龙, 等. 基于改进YOLOv8n的茶树嫩芽识别[J]. 茶叶科学, 2024, 44(6): 949-959. Yang X W, Shen Q, Luo J L, et al.Research on tea bud recognition based on improved YOLOv8n[J]. Journal of Tea Science, 2024, 44(6): 949-959. [27] Wang H Q, Guo X X, Zhang S H, et al.Detection and recognition of foreign objects in Pu-erh sun-dried green tea using an improved YOLOv8 based on deep learning[J]. PloS One, 2025, 20(1): e0312112. doi: 10.1371/journal.pone.0312112. [28] Tian Y N, Yang G D, Wang Z, et al.Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426. doi: 10.1016/j.compag.2019.01.012. [29] 闫彬, 樊攀, 王美茸, 等. 基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报, 2022, 53(9): 28-38, 59. Yan B, Fan P, Wang M R, et al.Real-time apple picking pattern recognition for picking robot based on improved YOLOv5m[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 28-38, 59. [30] 赵露强, 彭强吉, 兰玉彬, 等. CottonBud-YOLOv5s轻量型棉花顶芽检测算法[J]. 农业工程学报, 2025, 41(4): 175-184. Zhao L Q, Peng Q J, Lan Y B, et al.CottonBud-YOLOv5s lightweight cotton bud detection algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(4): 175-184. [31] 白强, 高荣华, 赵春江, 等. 基于改进YOLOV5s网络的奶牛多尺度行为识别方法[J]. 农业工程学报, 2022, 38(12): 163-172. Bai Q, Gao R H, Zhao C J, et al.Multi-scale behavior recognition method for dairy cows based on improved YOLOV5s network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 163-172. [32] 尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学报, 2022, 38(9): 222-229. Shang Y Y, Zhang Q R, Song H B.Application of deep learning using YOLOv5s to apple flower detection in natural scenes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229. [33] Tan M X, Le Q V.EfficientNet: rethinking model scaling for convolutional neural networks[J]. International Conference on Machine Learning, 2019, arXiv: 1905.11946. doi: 10.48550/arXiv.1905.11946. [34] Ren F, Fei J J, Li H S, et al.Steel surface defect detection using improved deep learning algorithm: ECA-SimSPPF-SIoU-Yolov5[J]. IEEE Access, 2024, 12: 32545-32553. doi: 10.1109/ACCESS.2024.3371584. [35] Lu S J, Chen W K, Zhang X, et al.Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture, 2024, 193: 106696. doi: 10.1016/j.compag.2022.106696. [36] Zhang X C, Wu Z M, Cao C M, et al.Design and operation of a deep-learning-based fresh tea-leaf sorting robot[J]. Computers and Electronics in Agriculture, 2023, 206: 107664. doi: 10.1016/j.compag.2023.107664. [37] Mazzia V, Khaliq A, Salvetti F, et al.Real-time apple detection system using embedded systems with hardware accelerators: an edge AI application[J]. IEEE Access, 2020, 8: 9102-9114. doi: 10.1109/ACCESS.2020.2964608. [38] Wu D H, Lü S H, Mei J, et al.Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: 105742. doi: 10.1016/j.compag.2020.105742. |
[1] | 汤海昆, 张兰军, 张盼盼, 刘本英. 茶叶中生物碱类化学成分及其生物活性的研究进展[J]. 茶叶科学, 2025, 45(5): 727-741. |
[2] | 李桂楠, 杨妮, 罗微, 张佳琪, 胡志航, 熊爱生, 郝建楠, 庄静. CsDET2基因的鉴定及其对茶树光周期与非生物胁迫的响应分析[J]. 茶叶科学, 2025, 45(5): 742-756. |
[3] | 范延艮, 萧越, 孟凡月, 刘文杰, 张颖, 孙平, 张丽霞, 任丽军. 紫芽茶树品种‘紫娟'花青素合成酶基因CsANS1的克隆与功能分析[J]. 茶叶科学, 2025, 45(5): 757-769. |
[4] | 涂一怡, 张幼, 徐婷, 陈俊杰, 王玉春, 吕务云. 基于环介导等温扩增技术检测Colletotrichum camelliae[J]. 茶叶科学, 2025, 45(5): 770-782. |
[5] | 江丽, 李朵姣, 胡新荣, 沈英姿, 郑寨生, 翁晓星, 刘淑婧, 边晓东, 袁名安, 陈暄. 不同栽培模式对籽叶双收茶树新梢生理生化特性的影响[J]. 茶叶科学, 2025, 45(5): 783-794. |
[6] | 王开荣, 张龙杰, 梁月荣, 黎晓湘, 郑新强. 茶树叶色鉴别、分类研究与叶色体系构建[J]. 茶叶科学, 2025, 45(5): 795-807. |
[7] | 李婧, 胡新龙, 唐慧珊, 郭金灵, 胡光灿, 冯德品, 仇方方, 王明乐. 基于感官评价和代谢组学的不同嫩度宜红工夫茶品质特征分析[J]. 茶叶科学, 2025, 45(5): 808-820. |
[8] | 郭瑜, 肖刘雨, 杜秋怡, 田野, 韩宇. 青砖茶水提多糖与茶渣碱提多糖综合提取工艺优化及乳液负载体系研究[J]. 茶叶科学, 2025, 45(5): 821-840. |
[9] | 苏林, 黄子豪, 孙丹, 陈金华, 郑亚杰, 陆英. 基于网络药理学和斑马鱼模型研究白茶中主要化合物降血糖作用[J]. 茶叶科学, 2025, 45(5): 841-851. |
[10] | 王永慧, 王多锋, 李学敏, 史田斌, 武立栋, 刘在国, 张广忠, 赵风云. 甘肃陇南和浙江金华绿茶的理化成分及体外抗氧化差异性研究[J]. 茶叶科学, 2025, 45(5): 852-864. |
[11] | 陈峻锐, 胡钧铭, 石元值, 韦翔华, 宋传奎, 张俊辉, 郑富海, 索广利. 炭基肥对茶园土壤团聚体有机碳物理稳定性的影响[J]. 茶叶科学, 2025, 45(5): 865-878. |
[12] | 孟超, 梁涛, 张霞, 王万红, 董煌林, 李明. 基于茶树种植和光伏发电的茶光互补模式研究[J]. 茶叶科学, 2025, 45(5): 898-908. |
[13] | 周逸德, 陈家霖, 吴俊梅, 赵竑博, 孙彬妹, 刘少群, 郑鹏. 茶树氮代谢基因:环境胁迫适应机制与育种应用研究进展[J]. 茶叶科学, 2025, 45(4): 545-558. |
[14] | 孙梦真, 胡志航, 杨凯欣, 张佳琪, 张楠, 熊爱生, 刘慧, 庄静. 茶树生物钟CsLUX基因的鉴定及其对光合特性的影响[J]. 茶叶科学, 2025, 45(4): 559-570. |
[15] | 严慧婷, 王艳燕, 陆建伟, 饶自蕾, 李媛媛, 常润润, 赵红艳, 杨俊聪, 张丽兰, 白捌普, 陆丽萍, 白冰, 王白娟, 高峻, 刘志薇. 玛玉茶种质资源的叶片结构与生化品质成分分析[J]. 茶叶科学, 2025, 45(4): 571-586. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|