[1] Affholder M C, Cohen G J V, Gombert-Courvoisier S, et al. Inter and intraspecific variability of dieldrin accumulation in Cucurbita fruits: new perspectives for food safety and phytomanagement of contaminated soils[J]. Science of the Total Environment, 2023, 859: 160152. doi: 10.1016/j.scitotenv.2022.160152. [2] 谭海军. 新型生物源杀虫剂双丙环虫酯[J]. 世界农药, 2019, 41(2): 61-64. Tan H J.The novel biological insecticide afidopyropen[J]. World Pesticides, 2019, 41(2): 61-64. [3] 农业农村部农药检定所. 中国农药信息网[EB/OL]. [2024-3-2]. http://www.icama.org.cn/zwb/dataCenter. Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs. China pesticide information network [EB/OL]. [2024-3-2]. http://www.icama.org.cn/zwb/dataCenter. [4] Guo M M, Sun H Z, Wang X R, et al.Residue behavior and risk assessment of afidopyropen and its metabolite M440I007 in tea[J]. Food Chemistry, 2023, 404: 134413. doi: 10.1016/j.foodchem.2022.134413. [5] FAO and WHO. Pesticide residues in food2019-report 2019-joint FAO/WHO meeting on pesticide residues [EB/OL]. [2024-03-20]. https://www.fao.org/3/ ca7455en/ca7455en.pdf. [6] Keigwin R P. Final registration decision for the new active ingredient; first new food & outdoor uses, afidopyropen [EB/OL]. (2018-09-04)[2024-03-20]. https://www.regulations.gov/document/EPA-HQ-OPP-2016-0416-0024. [7] Shin J M, Choi S, Park Y H, et al.Comparison of QuEChERS and liquid-liquid extraction methods for the simultaneous analysis of pesticide residues using LC-MS/MS[J]. Food Control, 2022, 141: 109202. doi: 10.1016/j.foodcont.2022.109202. [8] 马丽莎, 郑光明, 尹怡, 等. 固相萃取/超高效液相色谱-串联质谱法测定稻渔水体中氟虫腈及其代谢物[J]. 分析测试学报, 2022, 41(11): 1678-1683. Ma L S, Zheng G M, Yin Y, et al.Determination of fipronil and its metabolites in rice fishing water samples by SPE/UPLC-MS/MS[J]. Journal of Instrumental Analysis, 2022, 41(11): 1678-1683. [9] Zhang X Y, Li Z, Wang Y, et al.Preparation of black phosphorus nanosheets/zeoliticimidazolate framework nanocomposite for high-performance solid-phase microextraction of organophosphorus pesticides[J]. Journal of Chromatography A, 2023, 1708: 464339. doi: 10.1016/j.chroma.2023.464339. [10] Bhuiya A, Yasmin S, Shaikh M A A, et al. Method development of multi pesticide residue analysis in country beans collected from Dhaka, Bangladesh, and their dietary risk assessment[J]. Food Chemistry, 2024, 445: 138741. doi: 10.1016/j.foodchem.2024.138741. [11] 徐芷怡, 陈梦婷, 侯锡爱, 等. QuEChERS-高效液相色谱-串联质谱法同时测定芝麻油中7种农药残留[J]. 分析化学, 2020, 48(7): 928-936. Xu Z Y, Chen M T, Hou X A, et al.Simultaneous determination of seven pesticide residues in sesame oil using QuEChERS-high performance liquid chromatography- tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 928-936. [12] 韩梅, 郭灵安, 焦颖, 等. 比较3种不同前处理方法结合高分辨质谱测定姜中农药残留的效果[J]. 食品安全质量检测学报, 2021, 12(9): 3674-3683. Han M, Guo L A, Jiao Y, et al.Comparison of the effects of 3 kinds of different pretreatment methods combined with high-resolution mass spectrometry applied to the determination of pesticide residues in ginger[J]. Journal of Food Safety & Quality, 2021, 12(9): 3674-3683. [13] 雷紫依, 苏光林, 李跑, 等. 植物源性食品中多农药残留GC-MS高通量快速检测技术研究进展[J]. 分析测试学报, 2023, 42(10): 1370-1380. Lei Z Y, Su G L, Li P, et al.Research progress of high-throughput and rapid detection of multi-pesticide residues in plant-derived food samples based on GC-MS[J]. Journal of Instrumental Analysis, 2023, 42(10): 1370-1380. [14] Schenck F J, Hobbs J E.Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide residue analysis[J]. Bulletin of Environmental Contamination and Toxicology, 2004, 73(1): 24-30. [15] Dong Y, Das S, Parsons J R, et al.Simultaneous detection of pesticides and pharmaceuticals in three types of bio-based fertilizers by an improved QuEChERS method coupled with UHPLC-q-ToF-MS/MS[J]. Journal of Hazardous Materials, 2023, 458: 131992. doi: 10.1016/j.jhazmat.2023.131992. [16] 李自强, 杨梅, 张新忠, 等. 改良QuEChERS方法与UPLC-MS/MS联用测定茶叶中草甘膦、草铵膦及氨甲基膦酸[J]. 茶叶科学, 2023, 43(2): 263-274. Li Z Q, Yang M, Zhang X Z, et al.Simultaneous determination of glyphosate, glufosinate and aminomethyl phosphonic acid residues in tea by modified QuEChERS method coupled with UPLC-MS/MS[J]. Journal of Tea Science, 2023, 43(2): 263-274. [17] Chen K Y, Liu X G, Wu X H, et al.Simultaneous determination of afidopyropen and its metabolite in vegetables, fruit and soil using UHPLC-MS/MS[J]. Food Additives & Contaminants: Part A, 2018, 35(4): 716-723. [18] 邵辉, 刘磊, 李辉, 等. UPLC-MS/MS法测定苹果中双丙环虫酯及其代谢物残留量[J]. 农药, 2019, 58(7): 511-514. Shao H, Liu L, Li H, et al.Determination of afidopyropenandits metabolite residues in apple by UPLC-MS/MS[J]. Agrochemicals, 2019, 58(7): 511-514. [19] Chawla S, Gor H N, Patel H K, et al.Validation of a QuEChERS-based method for the estimation of afidopyropen in Brinjal (Solanum melongena L.) and soil[J]. Journal of AOAC International, 2020, 103(1): 68-72. [20] Xie J, Zheng Y X, Liu X G, et al.Human health safety studies of a new insecticide: dissipation kinetics and dietary risk assessment of afidopyropen and one of its metabolites in cucumber and nectarine[J]. Regulatory Toxicology and Pharmacology, 2019, 103: 150-157. [21] Liu X L, Ban N, Fu Z X, et al.Persistent toxicity and dissipation dynamics of afidopyropen against the green peach aphid Myzus persicae (Sulzer) in cabbage and chili[J]. Ecotoxicology and Environmental Safety, 2023, 252: 114584. doi: 10.1016/j.ecoenv.2023.114584. [22] 郇志博, 于世幸, 王明月, 等. 3种杀虫剂在豇豆中的残留行为及膳食风险评估[J]. 农药, 2023, 62(10): 741-745. Huan Z B, Yu S X, Wang M Y, et al.Residue behavior and dietary risk assessment of 3 insecticides in cowpea[J]. Agrochemicals, 2023, 62(10): 741-745. [23] Chen Y J, Guo M C, Liu X G, et al.Determination and dissipation of afidopyropen and its metabolite in wheat and soil using QuEChERS-UHPLC-MS/MS[J]. Journal of Separation Science, 2018, 41(7): 1674-1681. [24] Hou X A, Qiao T, Zhao Y L, et al.Dissipation and safety evaluation of afidopyropen and its metabolite residues in supervised cotton field[J]. Ecotoxicology and Environmental Safety, 2019, 180: 227-233. [25] Guo M M, Qin Y J, Sun H Z, et al.Method validation for detection of afidopyropen and M440I007 in tea[J]. Journal of the Science of Food and Agriculture, 2023, 103(12): 5738-5746. [26] 邵奇, 吴涛, 解雪峰, 等. 不同植茶年限土壤氮素组分变化及其与环境因子关系[J]. 环境科学, 2024, 45(3): 1665-1673. Shao Q, Wu T, Xie X F, et al.Changes in soil nitrogen components and their relationship with environmental factors with different tea plantation ages[J]. Environmental Science, 2023, 45(3): 1665-1673. [27] Wang Z H, Wang X R, Wang M, et al.Establishment of a QuEChERS-UPLC-MS/MS method for simultaneously detecting tolfenpyrad and its metabolites in tea[J]. Agronomy, 2022, 12(10): 2324. doi: 10.3390/agronomy12102324. [28] Perestrelo R, Silva P, Porto-Figueira P, et al.QuEChERS-fundamentals, relevant improvements, applications and future trends[J]. Analytica Chimica Acta, 2019, 1070: 1-28. [29] 黄田田, 汤桦, 董晓倩, 等. 多壁碳纳米管QuEChERS-气相色谱法测定茶叶中23种有机磷农药残留量[J]. 食品科学, 2018, 39(6): 315-321. Huang T T, Tang H, Dong X Q, et al.Determination of 23 organophosphorus pesticide residues in tea by QuEChERS extraction with multi-walled carbon nanotubes (MWCNTs) coupled to gas chromatography[J]. Food Science, 2018, 39(6): 315-321. [30] 荣杰峰, 韦航, 李亦军, 等. 羟基化多壁碳纳米管分散固相萃取-气相色谱-质谱法测定茶叶中21种有机磷农药[J]. 色谱, 2016, 34(2): 194-201. Rong J F, Wei H, Li Y J, et al.Determination of 21 organophosphorus pesticides in tea by gas chromatography-mass spectrometry coupled with hydroxylated multi-walled carbon nanotubes based on dispersive solid-phase extraction[J]. Chinese Journal of Chromatography, 2016, 34(2): 194-201. [31] Zhu B Q, Xu X Y, Luo J W, et al.Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent[J]. Food Chemistry, 2019, 276: 202-208. [32] Fang N, Zhao X P, Li Y J, et al.Uptake, translocation and subcellular distribution of broflanilide, afidopyropen, and flupyradifurone in mustard (Brassica juncea)[J]. Journal of Hazardous Materials, 2023, 452: 131381. doi: 10.1016/j.jhazmat.2023.131381. |