茶叶科学 ›› 2025, Vol. 45 ›› Issue (4): 545-558.
• 综述 • 下一篇
周逸德1, 陈家霖1, 吴俊梅1, 赵竑博1,2, 孙彬妹1,2, 刘少群1,2, 郑鹏1,2,*
收稿日期:
2025-02-24
修回日期:
2025-05-03
出版日期:
2025-08-15
发布日期:
2025-08-15
通讯作者:
*zhengp@scau.edu.cn
作者简介:
周逸德,男,硕士研究生,主要从事茶树栽培方面的研究。
基金资助:
ZHOU Yide1, CHEN Jialin1, WU Junmei1, ZHAO Hongbo1,2, SUN Binmei1,2, LIU Shaoqun1,2, ZHENG Peng1,2,*
Received:
2025-02-24
Revised:
2025-05-03
Online:
2025-08-15
Published:
2025-08-15
摘要: 氮代谢基因在茶树应对多种环境胁迫中起着关键作用,主要通过调控不同通路中的代谢物质来应对环境胁迫。近年来,采用转录组与代谢组联合分析、基因组鉴定等技术手段对茶树氮代谢基因开展了系列研究,取得了重要进展,但仍存在很多科学问题急需解决,如茶树遗传转化效率过低、对基因研究仍停留在转录组表观调控水平,以及在生产中将基因与育种结合的应用较少等。系统总结了茶树氮代谢基因在不同胁迫条件、不同器官、不同土壤元素中的表达模式,以及不同胁迫对茶树碳氮平衡调控机制的研究进展,揭示了这些基因在茶树胁迫适应和品质提升中的重要性。此外,对茶树的氮代谢基因研究方法、转基因技术及其育种应用等方面进行展望,以期为茶树的氮代谢基因调控机制研究以及育种研究提供参考。
中图分类号:
周逸德, 陈家霖, 吴俊梅, 赵竑博, 孙彬妹, 刘少群, 郑鹏. 茶树氮代谢基因:环境胁迫适应机制与育种应用研究进展[J]. 茶叶科学, 2025, 45(4): 545-558.
ZHOU Yide, CHEN Jialin, WU Junmei, ZHAO Hongbo, SUN Binmei, LIU Shaoqun, ZHENG Peng. Nitrogen Metabolism Genes in Tea Plant: Research Progress on the Environmental Stress Adaptation Mechanism and Breeding Application[J]. Journal of Tea Science, 2025, 45(4): 545-558.
[1] Xia X Y, Wang X D, Wang H, et al.Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway[J]. Journal of Ethnopharmacology, 2021, 272: 113919. doi:10.1016/j.jep.2021.113919. [2] 高峰, 许蒋鸿, 陈富桥. 数字资本会影响消费者增加茶叶线上购买吗?——基于4090个消费者样本的实证分析[J]. 茶叶科学, 2023, 43(6): 870-880. Gao F, Xu J H, Chen F Q.Does digital capital influence consumers to increase online tea purchases?: an empirical analysis based on 4090 consumer samples[J]. Journal of Tea Science, 2023, 43(6): 870-880. [3] Coruzzi G, Bush D R.Nitrogen and carbon nutrient and metabolite signaling in plants[J]. Plant Physiology, 2001, 125(1): 61-64. [4] Liang Y R, Lu J L, Zhang L Y, et al.Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions[J]. Food Chemistry, 2003, 80(2): 283-290. [5] Sandhu N, Sethi M, Kumar A, et al.Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: a review[J]. Frontiers in Plant Science, 2021, 12: 657629. doi:10.3389/fpls.2021.657629. [6] Liu Z W, Li H, Liu J X, et al.Integrative transcriptome, proteome, and microRNA analysis reveals the effects of nitrogen sufficiency and deficiency conditions on theanine metabolism in the tea plant (Camellia sinensis)[J]. Horticulture Research, 2020, 7(1): 65. doi:10.1038/s41438-020-0290-8. [7] Mittler R.Abiotic stress, the field environment and stress combination[J]. Trends in Plant Science, 2006, 11(1): 15-19. [8] Yin H Y, Yang F, He X Y, et al.Advances in the functional study of glutamine synthetase in plant abiotic stress tolerance response[J]. The Crop Journal, 2022, 10(4): 917-923. [9] Zhang F, He W, Yuan Q Y, et al.Transcriptome analysis identifies CsNRT genes involved in nitrogen uptake in tea plants, with a major role of CsNRT2.4[J]. Plant Physiology and Biochemistry, 2021, 167: 970-979. [10] Zhang W J, Lin L, Wang T, et al.Genome-wide identification of AMT2-type ammonium transporters reveal that CsAMT2.2 and CsAMT2.3 potentially regulate NH4+ absorption among three different cultivars of Camellia sinensis[J]. International Journal of Molecular Sciences, 2022, 23(24): 15661. doi:10.3390/ijms232415661. [11] Svennerstam H, Ganeteg U, Näsholm T.Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5[J]. New Phytologist, 2008, 180(3): 620-630. [12] Tang D D, Liu M Y, Zhang Q F, et al.Isolation and characterization of chloroplastic glutamine synthetase gene (CsGS2) in tea plant Camellia sinensis[J]. Plant Physiology and Biochemistry, 2020, 155: 321-329. [13] 郭玲玲, 张芬, 成浩, 等. 茶树CsAAPs亚家族基因的克隆与表达分析[J]. 茶叶科学, 2020, 40(4): 454-464. Guo L L, Zhang F, Cheng H, et al.Molecular cloning and expression analysis of CsAAPs gene subfamily in Camellia Sinensis[J]. Journal of Tea Science, 2020, 40(4): 454-464. [14] Tang D D, Liu M Y, Zhang Q F, et al.Preferential assimilation of NH4+ over NO3- in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis[J]. Plant Science, 2020, 291: 110369. doi:10.1016/j.plantsci.2019.110369. [15] Li F, Dong C X, Yang T Y, et al.The tea plant CsLHT1 and CsLHT6 transporters take up amino acids, as a nitrogen source, from the soil of organic tea plantations[J]. Horticulture Research, 2021, 8(1): 1-12. [16] Yue C, Cao H L, Zhang S R, et al.Multilayer omics landscape analyses reveal the regulatory responses of tea plants to drought stress[J]. International Journal of Biological Macromolecules, 2023, 253: 126582. doi:10.1016/j.ijbiomac.2023.126582. [17] Wang H, Zhang H H, Liu Y S, et al.Increase of nitrogen to promote growth of poplar seedlings and enhance photosynthesis under NaCl stress[J]. Journal of Forestry Research, 2019, 30(4): 1209-1219. [18] 张乐欢, 邹昌玉, 朱天翔, 等. 茉莉酸在植物抗逆性中的研究进展[J]. 生物工程学报, 2024, 40(1): 15-34. Zhang L H, Zou C Y, Zhu T X, et al.The role of jasmonic acid in stress resistance of plants: a review[J]. Chinese Journal of Biotechnology, 2024, 40(1): 15-34. [19] 申瑞寒, 马立锋, 杨向德, 等. 氮素形态和弱光胁迫对茶树生长代谢的影响[J]. 茶叶科学, 2023, 43(3): 349-355. Shen R H, Ma L F, Yang X D, et al.Effects of nitrogen form and weak light stress on tea plant growth and metabolism[J]. Journal of Tea Science, 2023, 43(3): 349-355. [20] Wang Y, Li Y, Wang J H, et al.Physiological changes and differential gene expression of tea plants [Camellia sinensis (L.) Kuntze var. niaowangensis Q.H. Chen] under cold stress[J]. DNA and Cell Biology, 2021, 40(7): 906-920. [21] 李佳骏, 叶阜鑫, 刘朝柱, 等. 砷对植物生长和生理生化的影响与机制综述[J]. 生态毒理学报, 2024, 19(1): 185-206. Li J J, Ye F X, Liu C Z, et al.Effects and mechanisms of arsenic on plant growth and physiological-biochemical characteristics: a review[J]. Asian Journal of Ecotoxicology, 2024, 19(1): 185-206. [22] Yu H, Li D, Wu Y L, et al.Integrative omics analyses of tea (Camellia sinensis) under glufosinate stress reveal defense mechanisms: a trade-off with flavor loss[J]. Journal of Hazardous Materials, 2024, 473: 134542. doi:10.1016/j.jhazmat.2024.134542. [23] Han W Y, Li X, Ahammed G J.Stress physiology of tea in the face of climate change[M]. Singapore: Springer Singapore, 2018. [24] Lin Z H, Chen C S, Zhong Q S, et al.The GC-TOF/MS-based Metabolomic analysis reveals altered metabolic profiles in nitrogen-deficient leaves and roots of tea plants (Camellia sinensis)[J]. BMC Plant Biology, 2021, 21(1): 506. doi:10.1186/s12870-021-03285-y. [25] Qiu Z H, Li A S, Huang W, et al.Metabolic profiling reveal changes in shoots and roots of nitrogen-deficient tea plants (Camellia sinensis cv. Jinxuan)[J]. Scientia Horticulturae, 2024, 337: 113528. doi:10.1016/j.scienta.2024.113528. [26] Jiang Y Y, Yang X D, Ni K, et al.Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation[J]. Journal of Environmental Management, 2023, 342: 118207. doi:10.1016/j.jenvman. 2023.118207. [27] Ruan J Y, Ma L F, Shi Y Z.Aluminium in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization[J]. Environmental Geochemistry and Health, 2006, 28(6): 519-528. [28] Widdig M, Schleuss P M, Weig A R, et al.Nitrogen and phosphorus additions alter the abundance of phosphorus-solubilizing bacteria and phosphatase activity in grassland soils[J]. Frontiers in Environmental Science, 2019, 7: 185. doi:10.3389/fenvs.2019.00185. [29] Ruan J Y, Gerendás J, Härdter R, et al.Effect of Nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants[J]. Annals of Botany, 2007, 99(2): 301-310. [30] Islam W, Waheed A, Naveed H, et al.MicroRNAs mediated plant responses to salt stress[J]. Cells, 2022, 11(18): 2806. doi:10.3390/cells11182806. [31] Yang Y Q, Guo Y.Unraveling salt stress signaling in plants[J]. Journal of Integrative Plant Biology, 2018, 60(9): 796-804. [32] Shirazi Z, Abedi A, Kordrostami M, et al.Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape (Vitis vinifera L.)[J]. 3 Biotech, 2019, 9(5): 199. doi:10.1007/s13205-019-1728-2. [33] Ghuge S A, Nikalje G C, Kadam U S, et al.Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation[J]. Journal of Hazardous Materials, 2023, 450: 131039. doi:10.1016/j.jhazmat.2023.131039. [34] Ma L F, Shi Y Z, Ruan J Y.Nitrogen absorption by field-grown tea plants (Camellia sinensis) in winter dormancy and utilization in spring shoots[J]. Plant and Soil, 2019, 442(1/2): 127-140. [35] Zhang W J, Ni K, Long L Z, et al.Nitrogen transport and assimilation in tea plant (Camellia sinensis): a review[J]. Frontiers in Plant Science, 2023, 14: 1249202. doi:10.3389/fpls.2023.1249202. [36] Li W, Xiang F, Zhong M C, et al.Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis)[J]. Scientific Reports, 2017, 7(1): 1693. doi:10.1038/s41598-017-01949-0. [37] Cai J J, Qiu Z H, Liao J M, et al.Comprehensive analysis of the yield and leaf quality of fresh tea (Camellia sinensis cv. Jin Xuan) under different nitrogen fertilization levels[J]. Foods, 2024, 13(13): 2091. doi:10.3390/foods13132091. [38] Zhang Q F, Shi Y T, Hu H, et al.Magnesium promotes tea plant growth via enhanced glutamine synthetase-mediated nitrogen assimilation[J]. Plant Physiology, 2023, 192(2): 1321-1337. [39] Xu W L, Li R, Zhang X Y, et al.Zinc/iron-regulated transporter-like protein cszip4 enhances zinc and nitrogen uptake and alleviates zinc stresses with nitrogen supply in Camellia sinensis[J]. Journal of Agricultural and Food Chemistry, 2024, 72(38): 21193-21207. [40] Zhang W, Dong X, Ni K, et al.Characterization of nitrate use efficiency in tea plant (Camellia sinensis ) based on leaf chlorate sensitivity[J]. Horticulture Research, 2024: uhae354. doi:10.1093/hr/uhae354. [41] Zhao S X, Bai Y L, Jin Z, et al.Effects of the combined application of nitrogen and selenium on tea quality and the expression of genes involved in nitrogen uptake and utilization in tea cultivar ‘Chuancha No.2’[J]. Agronomy, 2023, 13(12): 2997. doi:10.3390/agronomy13122997. [42] Fritz C, Mueller C, Matt P, et al.Impact of the C-N status on the amino acid profile in tobacco source leaves[J]. Plant, Cell & Environment, 2006, 29(11): 2055-2076. [43] Gao P, Xin Z Y, Zheng Z L.The OSU1/QUA2/TSD2-encodedputative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in arabidopsis[J]. PLoS ONE, 2008, 3(1): e1387. doi:10.1371/journal.pone.0001387. [44] Escobar M A, Geisler D A, Rasmusson A G.Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate[J]. The Plant Journal, 2006, 45(5): 775-788. [45] Coruzzi G M, Zhou L.Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’[J]. Current Opinion in Plant Biology, 2001, 4(3): 247-253. [46] Dong F, Hu J H, Shi Y Z, et al.Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2019, 138: 48-57. [47] Wang Y, Wang Y M, Lu Y T, et al.Influence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry, 2021, 167: 561-566. [48] Shao C Y, Jiao H Z, Chen J H, et al.Carbon and nitrogen metabolism are jointly regulated during shading in roots and leaves of Camellia Sinensis[J]. Frontiers in Plant Science, 2022, 13: 894840. doi:10.3389/fpls.2022.894840. [49] Li Y C, Jeyaraj A, Yu H P, et al.Metabolic regulation profiling of carbon and nitrogen in tea plants [Camellia sinensis (L.) O. Kuntze] in response to Shading[J]. Journal of Agricultural and Food Chemistry, 2020, 68(4): 961-974. [50] Wu X L, Hao Y, Lu W, et al.Arbuscular mycorrhizal fungi enhance nitrogen assimilation and drought adaptability in tea plants by promoting amino acid accumulation[J]. Frontiers in Plant Science, 2024, 15: 1450999. doi:10.3389/fpls.2024.1450999. [51] Zhu X J, Liao J R, Xia X L, et al.Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature[J]. BMC Plant Biology, 2019, 19(1): 43. doi:10.1186/s12870-019-1646-9. [52] Ban Q Y, Wang X W, Pan C, et al.Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants[J]. PLoS ONE, 2017, 12(12): e0188514. doi:10.1371/journal.pone.0188514. [53] Chen X, Ye K, Xu Y, et al.Effect of shading on the morphological, physiological, and biochemical characteristics as well as the transcriptome of matcha green tea[J]. International Journal of Molecular Sciences, 2022, 23(22): 14169. doi:10.3390/ijms232214169. [54] Li D, Jin Y, Lu Q H, et al.Genome-wide identification and expression analysis of NIN-like protein (NLP) genes: Exploring their potential roles in nitrate response in tea plant (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2024, 207. doi:108340. 10.1016/j.plaphy. 2024.108340 [55] Zhou Z W, Luo X Z, Fu M Y, et al.Ethylamine, beyond the synthetic precursor of theanine: CsCBF4-CsAlaDC module promoted ethylamine synthesis to enhance osmotic tolerance in tea plants[J]. The Plant Journal, 2024, 120(5): 1920-1932. [56] Yang T Y, Li H P, Tai Y L, et al.Transcriptional regulation of amino acid metabolism in response to nitrogen deficiency and nitrogen forms in tea plant root (Camellia sinensis L.)[J]. Scientific Reports, 2020, 10(1): 6868. doi:10.1038/s41598-020-63835-6. [57] Wang Y, Xuan Y M, Wang S M, et al.Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.)[J]. Physiologia Plantarum, 2022, 174(1): e13646. doi:10.1111/ppl.13646. [58] Li F, Li H P, Dong C X, et al.Theanine transporters are involved in nitrogen deficiency response in tea plant (Camellia sinensis L.)[J]. Plant Signaling & Behavior, 2020, 15(3): 1728109. doi:10.1080/15592324.2020.1728109. [59] Huang W, Ma D, Zaman F, et al.Identification of the lysine and histidine transporter family in Camellia sinensis and the characterizations in nitrogen utilization[J]. Horticultural Plant Journal, 2024, 10(1): 273-287. [60] 刘红玲. 茶树氨基酸转运基因CsVAT1.3、CsLHT8L、CsCAT9.1、CsAAP3.1功能鉴定[D]. 武汉: 华中农业大学, 2020. Liu H L.Functional characterization of amino acid transporter genes CsVAT1.3, CsLHT8L, CsCAT9.1, CsAAP3.1 in Camellia sinensis [D]. Wuhan: Huazhong Agricultural University, 2020. [61] Feng L, Yang T Y, Zhang Z L, et al.Identification and characterization of cationic amino acid transporters (CATs) in tea plant (Camellia sinensis)[J]. Plant Growth Regulation, 2018, 84(1): 57-69. [62] Feng L, Yu Y C, Lin S J, et al.Tonoplast-localized theanine transporter Cscat2 may mediate theanine storage in the root of tea plants (Camellia sinensis L.)[J]. Frontiers in Plant Science, 2021, 12: 797854. doi:10.3389/fpls.2021.797854. [63] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. [64] Aslam M, Huffaker R C.Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings[J]. Plant Physiology, 1989, 91(3): 1152-1156. [65] 林郑和, 钟秋生, 陈常颂, 等. 不同氮浓度下茶树氮合成关键酶基因的表达分析[J]. 核农学报, 2014, 28(6): 985-989. Lin Z H, Zhong Q S, Chen C S, et al.Expression analysis of key enzyme genes of nitrogen synthesis from tea tree leave under different nitrogen level[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(6): 985-989. [66] Rana N K, Mohanpuria P, Yadav S K.Cloning and characterization of a cytosolic glutamine synthetase from Camellia sinensis (L.) O. Kuntze that is upregulated by ABA, SA, and H2O2[J]. Molecular Biotechnology, 2008, 39(1): 49-56. [67] Fu X M, Liao Y Y, Cheng S H, et al.Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea[J]. Plant Biotechnology Journal, 2021, 19(1): 98-108. [68] Fontaine J X, Tercé-Laforgue T, Armengaud P, et al.Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism[J]. The Plant Cell, 2012, 24(10): 4044-4065. [69] 王新超, 杨亚军, 陈亮, 等. 不同品种茶树氮素效率差异研究[J]. 茶叶科学, 2004, 24(2): 93-98. Wang X C, Yang Y J, Chen L, et al.Genotypic difference of nitrogen efficiency in tea plant [Camellia sinensis (L.) O. Kuntze][J]. Journal of Tea Science, 2004, 24(2): 93-98. [70] 汤丹丹, 刘美雅, 范凯, 等. 茶树氮素吸收利用机制研究进展[J]. 园艺学报, 2017, 44(9): 1759-1771. Tang D D, Liu M Y, Fan K, et al.Research progress of nitrogen utilization and assimilation in tea plant[J]. Acta Hortculturae Sinica, 2017, 44(9): 1759-1771. [71] 阮建云, 王晓萍, 崔思真, 等. 茶树品种间氮素营养的差异及其机制的研究[J]. 中国茶叶, 1993, 15(3): 35-37. Ruan J Y, Wang X P, Cui S Z, et al.Study on the differences and mechanisms of nitrogen nutrition among tea varieties[J]. China Tea, 1993, 15(3): 35-37. [72] 王丽鸳, 陈常颂, 林郑和, 等. 不同品种茶树生长对氮素浓度的响应差异[J]. 茶叶科学, 2015, 35(5): 423-428. Wang L Y, Chen C S, Lin Z H, et al.Growth characteristic of different cultivars of tea plant in response to nitrogen contents[J]. Journal of Tea Science, 2015, 35(5): 423-428. [73] 苏静静, 阮丽, 王丽鸳, 等. 茶树氮吸收效率的早期鉴定技术研究[J]. 茶叶科学, 2020, 40(5): 576-587. Su J J, Ruan L, Wang L Y, et al.Early identification of nitrogen absorption efficiency in tea plants[J]. Journal of Tea Science, 2020, 40(5): 576-587. [74] Zhang F, Liu Y, Wang L Y, et al.Molecular cloning and expression analysis of ammonium transporters in tea plants (Camellia sinensis (L.) O. Kuntze) under different nitrogen treatments[J]. Gene, 2018, 658: 136-145. [75] Ruan L, Wang L, Wei K, et al.Comparative analysis of nitrogen spatial heterogeneity responses in low nitrogen susceptible and tolerant tea plants (Camellia sinensis)[J]. Scientia Horticulturae, 2019, 246: 182-189. [76] Ruan L, Wei K, Li J W, et al.Responses of tea plants (Camellia sinensis) with different low-nitrogen tolerances during recovery from nitrogen deficiency[J]. Journal of the Science of Food and Agriculture, 2022, 102(4): 1405-1414. [77] Fan K, Zhang J, Wang M, et al.Development and application of SNP-KASP markers based on genes related to nitrogen uptake, assimilation and allocation in tea plant (Camellia sinensis L.)[J]. Agronomy, 2022, 12(10): 2534. doi:10.3390/agronomy12102534. [78] Huang R, Wang J Y, Yao M Z, et al. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants [J]. Horticulture Research, 2022, 9: uhab029. doi : 10.1093/hr/uhab029. [79] Chen F, He Y, Yao X Z, et al.CsMOF1-guided regulation of drought-induced theanine biosynthesis in Camellia sinensis[J]. International Journal of Biological Macromolecules, 2024, 268: 131725. doi:10.1016/j.ijbiomac.2024.131725. [80] Li M S, Lu J, Tao M M, et al.Genome-wide identification of seven polyamine oxidase genes in Camellia sinensis (L.) and their expression patterns under various abiotic stresses[J]. Frontiers in Plant Science, 2020, 11: 544933. doi:10.3389/fpls.2020.544933. [81] Cao Q H, Lü W Y, Jiang H, et al.Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress[J]. International Journal of Biological Macromolecules, 2022, 205: 749-760. [82] Xia E H, Tong W, Wu Q, et al.Tea plant genomics: achievements, challenges and perspectives[J]. Horticulture Research, 2020, 7(1): 7. doi:10.1038/s41438-019-0225-4. [83] 谭和平, 周李华, 钱杉杉, 等. 茶树转基因技术研究进展[J]. 植物科学学报, 2009, 27(3): 323-326. Tan H P, Zhou L H, Qian S S, et al.Advances on transgenic technique in tea plants[J]. Plant Science Journal, 2009, 27(3): 323-326. [84] Mondal T, Bhattacharya A, Ahuja P, et al.Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by agrobacterium-mediated transformation of somatic embryos[J]. Plant Cell Reports, 2001, 20(8): 712-720. [85] 张广辉, 梁月荣, 陆建良. 发根农杆菌介导的茶树发根高频诱导与遗传转化[J]. 茶叶科学, 2006, 26(1): 1-10. Zhang G H, Liang Y R, Lu J L.Agrobacterium rhizogenes-mediated high frequency hairy root induction and genetic transformation in tea plant[J]. Journal of Tea Science, 2006, 26(1): 1-10. [86] Mohanpuria P, Kumar V, Ahuja P S, et al.Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L.[J]. Molecular Biotechnology, 2011, 48(3): 235-243. [87] Singh H R, Hazarika P, Deka M, et al.Study of Agrobacterium-mediated co-transformation of tea for blister blight disease resistance[J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(1): 24-35. [88] Chen K L, Wang Y P, Zhang R, et al.CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70(1): 667-697. [89] Cardi T, Murovec J, Bakhsh A, et al.CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation[J]. Trends in Plant Science, 2023, 28(10): 1144-1165. [90] Schindele P, Puchta H.Engineering CRISPR/Lb Cas12a for highly efficient, temperature-tolerant plant gene editing[J]. Plant Biotechnology Journal, 2020, 18(5): 1118-1120. [91] Abdallah N A, Prakash C S, McHughen A G. Genome editing for crop improvement: challenges and opportunities[J]. GM Crops & Food, 2015, 6(4): 183-205. |
[1] | 孙梦真, 胡志航, 杨凯欣, 张佳琪, 张楠, 熊爱生, 刘慧, 庄静. 茶树生物钟CsLUX基因的鉴定及其对光合特性的影响[J]. 茶叶科学, 2025, 45(4): 559-570. |
[2] | 郑杰, 侯紫妍, 易超, 黄守延, 郭俊齐, 苏会, 周琼琼, 詹强国, 赵仁亮. 水处理工艺对信阳毛尖加工过程中特征香气的影响[J]. 茶叶科学, 2025, 45(4): 687-698. |
[3] | 徐歆, 李亚奇, 杨亦扬, 徐琪, 钱雪飞, 马春雷, 梅菊芬. AI茶树育种技术:以黄化性状预测为例[J]. 茶叶科学, 2025, 45(3): 393-401. |
[4] | 翟秀明, 李解, 肖富良, 唐敏, 曾乐武, 侯渝嘉, 汤燚. 茶树茎叶并联变异差异表达基因的WGCNA分析[J]. 茶叶科学, 2025, 45(3): 402-414. |
[5] | 张辉, 刘丰静, 李慧玲, 李良德, 王庆森, 王定锋. 茶橙瘿螨初期侵染不同抗性茶树品种的代谢组分析[J]. 茶叶科学, 2025, 45(3): 415-426. |
[6] | 王金波, 谢思艺, 窦祥亚, 申小华, 田娜, 刘硕谦. 茶树PATL基因家族鉴定及CsPATL1上游转录调控分析[J]. 茶叶科学, 2025, 45(2): 191-200. |
[7] | 郭佳璐, 璩馥榕, 蔡天晨, 赵洋, 杨培迪, 刘勇, 周跃斌, 刘振. 基于农艺性状和SNP分子标记的湖南78份茶树种质资源遗传多样性研究[J]. 茶叶科学, 2025, 45(2): 219-233. |
[8] | 李悦欣, 鄢东海, 张金峰, 蒲运丹, 李帅, 孟泽洪. 茶树L型凝集素受体激酶基因家族鉴定及其对茶轮斑病和茶炭疽病的响应[J]. 茶叶科学, 2025, 45(2): 253-265. |
[9] | 杨芳, 江冰冰, 雷金梅, 郭存武, 李丽梅, 徐嘉忆, 王兴华, 袁文侠, 王白娟. 茶树叶斑病病原菌的分离与鉴定[J]. 茶叶科学, 2025, 45(2): 266-272. |
[10] | 晏朵, 余鹏辉, 龚雨顺. 萎凋过程中环境胁迫对茶叶品质影响研究进展[J]. 茶叶科学, 2025, 45(1): 1-14. |
[11] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
[12] | 朱倩, 邵陈禹, 周彪, 刘硕谦, 刘仲华, 田娜. 茶树ICE基因家族鉴定及CsICE43克隆和低温表达分析[J]. 茶叶科学, 2025, 45(1): 43-60. |
[13] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[14] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
[15] | 赵茜, 刘倩, 蔡何佳奕, 何婕绮, 方筠雅, 刘雨欣, 陈超, 郑曜东, 张天经, 余文娟, 杨广. 干旱低温复合胁迫对茶树光合生理特性的影响及模拟预测[J]. 茶叶科学, 2024, 44(6): 901-916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|