茶叶科学 ›› 2025, Vol. 45 ›› Issue (5): 727-741.doi: 10.13305/j.cnki.jts.2025.05.002
• 综述 • 下一篇
汤海昆, 张兰军, 张盼盼, 刘本英*
收稿日期:
2025-03-14
修回日期:
2025-07-04
出版日期:
2025-10-15
发布日期:
2025-10-17
通讯作者:
* liusuntao@126.com
作者简介:
汤海昆,男,助理研究员,主要从事茶叶加工与质检方面的研究。
基金资助:
TANG Haikun, ZHANG Lanjun, ZHANG Panpan, LIU Benying*
Received:
2025-03-14
Revised:
2025-07-04
Online:
2025-10-15
Published:
2025-10-17
摘要: 生物碱是一类具有化学多样性的含氮次级代谢产物,广泛分布于高等植物、真菌和细菌中。多数天然生物碱具有抗氧化、抗炎、抗肿瘤等生物活性。综述了茶叶中已鉴定的生物碱类群并简要分析其生物活性,包括嘌呤类生物碱通过拮抗腺苷受体调控神经兴奋作用、抑制磷酸二酯酶调控代谢功能及抗炎等生物活性,黄烷类生物碱预防糖尿病、抑制癌细胞血管生成等功效,异戊烯基吲哚类生物碱在抗炎、抑制癌细胞生长、保护神经细胞等方面的作用机制,并对未来茶叶生物碱的鉴定、合成及功能性评价体系构建作了展望。
中图分类号:
汤海昆, 张兰军, 张盼盼, 刘本英. 茶叶中生物碱类化学成分及其生物活性的研究进展[J]. 茶叶科学, 2025, 45(5): 727-741. doi: 10.13305/j.cnki.jts.2025.05.002.
TANG Haikun, ZHANG Lanjun, ZHANG Panpan, LIU Benying. Research Progress on Chemical Constituents and Biological Activities of Alkaloids in Tea[J]. Journal of Tea Science, 2025, 45(5): 727-741. doi: 10.13305/j.cnki.jts.2025.05.002.
[1] 曹明哲, 季宇彬, 辛国松, 等. 天然植物中生物碱类抗肿瘤药物研究进展[J]. 亚太传统医药, 2015, 11(7): 59-61. Cao M Z, Ji Y B, Xin G S, et al.Research progress of alkaloids antiumor drugs of natural plants[J]. Asia-Pacific Traditional Medicine, 2015, 11(7): 59-61. [2] 金基强, 周晨阳, 马春雷, 等. 我国代表性茶树种质嘌呤生物碱的鉴定[J]. 植物遗传资源学报, 2014, 15(2): 279-285. Jin J Q, Zhou C Y, Ma C L, et al.Identification on purine alkaloids of representative tea germplasms in China[J]. Journal of Plant Genetic Resources, 2014, 15(2): 279-285. [3] Nathanson J.Caffeine and related methylxanthines: possible naturally occurring pesticides[J]. Science, 1984, 226(4671): 184-187. [4] 冯玮, 赵亚飞, 吴泽平, 等. 茶叶咖啡碱的研究进展[J]. 食品安全质量检测学报, 2025, 16(3): 94-105. Feng W, Zhao Y F, Wu Z P, et al.Research progress on tea caffeine[J]. Journal of Food Safety & Quality, 2025, 16(3): 94-105. [5] 王玉娇. 茶碱类药物的研究进展及应用[J]. 中国医药指南, 2016, 14(21): 26-27. Wang Y J.Research progress and application of theophylline drugs[J]. Guide of China Medicine, 2016, 14(21): 26-27. [6] 张娅楠, 陶琳琳, 高路, 等. 可可茶化学成分及药理功能的研究进展[J]. 食品科技, 2020, 45(7): 102-107. Zhang Y N, Tao L L, Gao L, et al.Research advance on Camellia Ptilophylla[J]. Food Science and Technology, 2020, 45(7): 102-107. [7] 秦丹丹, 陈俊丽, 李波, 等. 高苦茶碱茶树新品系‘苦茶6号'茶类适制性研究[J]. 食品工业科技, 2023, 44(17): 316-323. Qin D D, Chen J L, Li B, et al.Research on the suitability of teas made from new tea line of Kucha 6 with high theacrine[J]. Science and Technology of Food Industry, 2023, 44(17): 316-323. [8] 叶创兴, 林永成, 苏建业, 等. 苦茶Camellia assamica varKucha Chang et Wang的嘌呤生物碱[J]. 中山大学学报(自然科学版), 1999(5): 82-86. Ye C X, Lin Y C, Su J Y, et al.Camellia assamica var kucha Chang et Wang of alkaloids[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1999(5): 82-86. [9] 杨春, 杨代星, 苏胜峰, 等. 贵州两地野生大厂茶嘌呤生物碱与儿茶素组分比较[J]. 浙江农业学报, 2024, 36(6): 1232-1244. Yang C, Yang D X, Sun S F, et al.Comparison of purine alkaloids and catechin components of wild Camellia tachangensis in Pu'an County and Panzhou County, Guizhou Province, China[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1232-1244. [10] Zhang Y H, Li Y F, Wang Y J, et al.Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea[J]. Nature Communications, 2020, 11(1): 1473. doi: 10.1038/s41467-020-15324-7. [11] Song X J, Mahendra S, Kyung E L, et al.Caffeine: a multifunctional efficacious molecule with diverse health implications and emerging delivery systems[J]. International Journal of Molecular Sciences, 2024, 25(22): 12003. doi: 10.3390/ijms252212003. [12] Svenningsson P, Moine Le C, Fisone G, et al.Distribution, biochemistry and function of striatal adenosine A2A receptors[J]. Progress in Neurobiology, 1999, 59(4): 355-396. [13] Dunwiddie V T, Masino A S.The role and regulation of adenosine in the central nervous system[J]. Annual Review of Neuroscience, 2001, 24(1): 31-55. [14] Carolin F R, Micheline M, Christian S, et al.Sleep-wake regulation and its impact on working memory performance: the role of adenosine[J]. Biology, 2016, 5(1): 11. doi: 10.3390/biology5010011. [15] Thakkar M M, Winston S, Mccarley R W.A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain[J]. The Journal of Neuroscience, 2003, 23(10): 4278-4287. [16] Malika E Y, Ledent C, Ménard J, et al.The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A2A receptors[J]. British Journal of Pharmacology, 2000, 129(7): 1465-1473. [17] Hong Z Y, Huang Z L, Qu W M, et al.An adenosine A2A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats[J]. Journal of Neurochemistry, 2005, 92(6): 1542-1549. [18] Reddy V S, Shiva S, Manikantan S, et al.Pharmacology of caffeine and its effects on the human body[J]. European Journal of Medicinal Chemistry Reports, 2024, 10: 100138. doi: 10.1016/j.ejmcr.2024.100138. [19] Scapec B, Grgic J, Varovic D, et al.Caffeine, but not paracetamol (acetaminophen), enhances muscular endurance, strength, and power[J]. Journal of the International Society of Sports Nutrition, 2024, 21(1): 2400513. doi: 10.1080/15502783. [20] Marcinek K, Luzak B, Rozalski M.The effects of caffeine on blood platelets and the cardiovascular system through adenosine receptors[J]. International Journal of Molecular Sciences, 2024, 25(16): 8905. doi: 10.3390/ijms25168905. [21] 王伟伟, 张建勇, 王蔚, 等. 茶叶中咖啡碱的开发利用[J]. 中国茶叶, 2021, 43(5): 11-15. Wang W W, Zhang J Y, Wang W, et al.Development and utilization of caffeine in tea[J]. China Tea, 2021, 43(5): 11-15. [22] 叶心, 王力, 姜超, 等. 升华法纯化茶叶咖啡碱及其对胶原酶和弹性蛋白酶的抑制作用研究[J]. 食品与发酵工业, 2021, 47: 43-49. Ye X, Wang L, Jiang C, et al.Purification of tea caffeine by sublimation and its inhibitory activity on collagenase and elastase[J]. Food and Fermentation Industries, 2021, 47: 43-49. [23] Echeverri D, Montes F R, Cabrera M, et al.Caffeine's vascular mechanisms of action[J]. International Journal of Vascular Medicine, 2010, 2010: 834060. doi: 10.1155/2010/834060. [24] Hashem A A A, Hakami O, Shazly E M, et al. Caffeine and purine derivatives: a comprehensive review on the chemistry, biosynthetic pathways, synthesis-related reactions, biomedical prospectives and clinical applications[J]. Chemistry & Biodiversity, 2024, 21(7): 1-34. [25] Ghasemi-Pirbaluti M, Motaghi E, Najafi A, et al.The effect of theophylline on acetic acid induced ulcerative colitis in rats[J]. Biomedicine & Pharmacotherapy, 2017, 90: 153-159. doi: 10.1016/j.biopha.2017.03.038. [26] Bin Y F, Xiao Y, Huang D M H, et al. Theophylline inhibits cigarette smoke-induced inflammation in skeletal muscle by upregulating HDAC2 expression and decreasing NF-κB activation[J]. American Journal of Physiology Lung Cellular and Molecular Physiology, 2019, 316(1): L197-L205. [27] Calzetta L, Hanania A N, Dini L F, et al.Impact of doxofylline compared to theophylline in asthma: a pooled analysis of functional and clinical outcomes from two multicentre, double-blind, randomised studies (DOROTHEO 1 and DOROTHEO2)[J]. Pulmonary Pharmacology & Therapeutics, 2018, 53: 20-26. doi: 10.1016/j.pupt.2018.09.007. [28] Weinberger M, Hendeles L.Theophylline in asthma[J]. The New England Journal of Medicine, 1996, 334(21): 1380-1388. [29] Rabe K F, Magnussen H, Dent G.Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relax-ants[J]. The European Respiratory Journal, 1995, 8(4): 637-642. [30] Voduc N, Alvarez G, Amjadi K, et al.Effect of theophylline on exercise capacity in COPD patients treated with combi-nation long -acting bronchodilator therapy: a pilot study[J]. International Journal of COPD, 2012, 7: 245-252. doi: 10.1136/thx.53.4.269. [31] 高梓琪, 满佳旭, 武思敏, 等. 茶碱研究进展[J]. 云南民族大学学报(自然科学版), 2022, 31(1): 35-40. Gao Z Q, Man J X, Wu S M, et al.Research progress of theophylline[J]. Journal of Yunnan Nationalities University: Natural Sciences, 2022, 31(1): 35-40. [32] Goh J W, Thaw M M, Ramim J U, et al.Theophylline toxicity: adifferential to consider in patients on long-term theophylline presenting with nonspecific symptoms[J]. Cureus, 2023, 15(11): e48480. doi: 10.7759/cureus.48480. [33] 唐秋静, 陈森, 许伟珍, 等. 小剂量茶碱对稳定期老年COPD患者免疫功能及血清炎性因子的影响[J]. 中国实用医药, 2018, 13(11): 83-85. Tang Q J, Chen S, Xu W Z, et al.Effects of low-dose theophylline on immune function and serum inflammatory factors in stable elderly COPD patients[J]. China Practical Medicine, 2018, 13(11): 83-85. [34] Shrikrishna D, Patel M, Tanner R J, et al.Quadriceps wasting and physical inactivity in patients with COPD[J]. The European Respiratory Journal, 2012, 40(5): 1115-1122. [35] François M, Marc D, Richard C, et al.An official american thoracic society/european respiratory society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical care Medicine, 2014, 189(9): 15-62. [36] Ghasemi-Pirbaluti M, Motaghi E, Najafi A, et al.The effect of theophylline on acetic acid induced ulcerative colitis in rats[J]. Biomedicine & Pharmacotherapy, 2017, 90: 153-159. doi: 10.1016/j.biopha.2017.03.038. [37] 苏静静, 王雪青, 宋文军, 等. 普洱茶对小鼠血糖的干预作用[J]. 食品科学, 2014, 35(9): 260-263. Su J J, Wang X Q, Song W J, et al.Intervention effect of Pu-erh tea on blood glucose in mice[J]. Food Science, 2014, 35(9): 260-263. [38] 董金娅, 何小芳, 杜晓翠, 等. 茶碱和可可碱对高脂饮食小鼠体质量和胰岛素抵抗的影响[J]. 食品研究与开发, 2023, 44(16): 68-75. Dong J Y, He X F, Du X C, et al.Effects of theophylline and theobromine on body mass and insulin resistance in mice fed with high-fat diet[J]. Food Research and Development, 2023, 44(16): 68-75. [39] Mitani T, Takaya T, Harada N, et al.Theophylline suppresses interleukin-6 expression by inhibiting glucocorticoid receptor signaling inpre-adipocytes[J]. Archives of Biochemistry and Biophysics, 2018, 64(6): 98-106. [40] Wu F F, Liu R R, Shen X, et al.Study on the interaction and antioxidant activity of theophylline and theobromine with SOD by spectra and calculation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019(215): 354-362. [41] Gu R H, Shi Y, Huang W G, et al.Theobromine mitigates IL-1β-induced oxidative stress, inflammatory response, and degradation of type Ⅱ collagen in human chondrocytes[J]. International Immunopharmacology, 2020, 82: 106226. doi: 10.1016/j.intimp.2020.106226. [42] Boden W E.High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from framingham to the veterans affairs high-density lipoprotein intervention trial[J]. The American Journal of Cardiology, 2000, 86(12): 19-22. [43] Lee J, Shirk A, Oram J F, et al.Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway[J]. Biochemical Journal, 2002, 364(2): 475-484. [44] Neufingerl N, Zebregs Y E, Schuring E A, et al.Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: a randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2013, 97(6): 1201-1209. [45] Jang H M, Kang H N, Mukherjee S, et al.Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes[J]. Biotechnology and Bioprocess Engineering, 2018, 23(6): 617-626. [46] Jang M H, Mukherjee S, Choi M J, et al.Theobromine alleviates diet-induced obesity in mice via phosphodiesterase-4 inhibition[J]. European Journal of Nutrition, 2020(59): 3503-3516. [47] Emi T, Takakazu M, Momona N, et al.Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner[J]. The Journal of Nutritional Biochemistry, 2022, 100: 108898. doi: 10.1016/j.jnutbio.2021.108898. [48] Yoneda M, Sugimoto N, Katakura M, et al.Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice[J]. The Journal of Nutritional Biochemistry, 2017, 39: 110-116. doi: 10.1016/j.jnutbio.2016.10.002. [49] Islam R, Matsuzaki K, Sumiyoshi E, et al.Theobromine improves working memory by activating the CaMKⅡ/CREB/BDNF pathway in rats[J]. Nutrients, 2019, 11(4): 888. doi: 10.3390/nu11040888. [50] Gil M, Skopińska-Rózewska E, Radomska D, et al.Effect of purinergic receptor antagonists suramin and theobromine on tumor-induced angiogenesis in BALB/c mice[J]. Folia Biologica, 1993, 39(2): 63-68. [51] Barcz E, Sommer E, Janik P, et al.Adenosine receptor antagonism causes inhibition of angiogenic activity of human ovarian cancer cells[J]. Oncology Reports, 2000, 7(6): 1285-1376. [52] Mendiola-Precoma J, Padilla K, Rodríguez-Cruz A, et al.Theobromine-induced changes in A1 Purinergic receptor gene expression and distribution in a rat brain Alzheimer's disease model[J]. Journal of Alzheimer's Disease, 2017, 55(3): 1273-1283. [53] Wang J, Gu J B, Masters C L, et al.A systemic view of Alzheimer disease-insights from amyloid-β metabolism beyond the brain[J]. Nature reviewsNeurology, 2017, 13(11): 703. doi: 10.1038/nrneurol.2017.111. [54] Usmani O S, Belvisi M G, Patel H J, et al.Theobromine inhibits sensory nerve activation and cough[J]. The FASEB Journal, 2005, 19(2): 1-16. [55] Kargul B, Özcan M, Peker S, et al.Evaluation of human enamel surfaces treated with theobromine: a pilot study[J]. Oral Health and Preventive Dentistry, 2012, 10(3): 275-282. [56] Grases F, Rodriguez A, Costa-Bauza A.Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis[J]. PLoS One, 2014, 9(10): e111184. doi: 10.1371/journal.pone.0111184. [57] Gao M, Zheng J, Zheng C, et al.Theacrine alleviates chronic inflammation by enhancing TGF-β-mediated shifts via TGF-β/SMAD pathway in Freund's incomplete adjuvant-induced rats[J]. Biochemical and Biophysical Research Communications, 2019, 522(3): 743-748. [58] Duan W, Liang L, Pan M, et al.Theacrine, a purine alkaloid from kucha, protects against Parkinson's disease through SIRT3 activation[J]. Phytomedicine, 2020, 77: 153281. doi: 10.1016/j.phymed.2020.153281. [59] Wang G E, Li Y E, Zhai Y J, et al.Theacrine protects against nonalcoholic fatty liver disease by regulating acylcarnitine metabolism[J]. Metabolism, 2018, 85: 227-239. doi: doi.org/10.1016/j.metabol.2018.04.011. [60] Wang Y, Yang X, Zheng X, et al.Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities[J]. Fitoterapia, 2010, 81(6): 627-631. [61] Qiao H, Ye X, Bai X, et al.Theacrine: a purine alkaloid from Camellia assamica var. Kucha with a hypnotic property via the adenosine system[J]. Neuroscience Letters, 2017, 659: 48-53. doi: 10.1016/j.neulet.2017.08.063. [62] 王冬梅, 卢嘉丽, 程悦, 等. 苦茶的急性毒性与神经药理活性初步研究[J]. 中山大学学报(自然科学版), 2010, 49(1): 76-79. Wang D M, Lu J L, Chen Y, et al.Primary studies on acute toxicity and sedative/hypnotic activity of Camellia Kucha[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1): 76-79. [63] Xu J K, Kurihara H, Zhao L, et al.Theacrine, a special purine alkaloid with sedative and hypnotic properties from Cammelia assamica var. Kucha in mice[J]. Journal of Asian Natural Products Research, 2007, 9(6/7/8): 665-672. [64] 谢果, 吴敏芝, 黄映如, 等. 1,3,7,9-四甲基尿酸抗抑郁作用的实验研究[J]. 中国药理学通报, 2009, 25(9): 1160-1163. Xie G, Wu M Z, Huang Y R, et al.1, 3, 7, 9-Experimental study of the antidepressant effects of tetramethyluric acid[J]. Chinese Pharmacological Bulletin, 2009, 25(9): 1160-1163. [65] Ouyang S H, Zhai Y J, Wu Y P, et al.Theacrine, a Potent antidepressant purine alkaloid from a special Chinese tea, promotes adult hippocampal neurogenesis in stressed mice[J]. Journal of Agricultural and Food Chemistry, 2021, 69(25): 7016-7027. [66] Sheng Y Y, Xiang J, Wang Z S, et al.Theacrine from camellia kucha and its health beneficial effects[J]. Frontiers in Nutrition, 2020, 7: 596823. doi: 10.3389/fnut.2020.596823. [67] 周玉龙. 白牡丹茶中黄烷生物碱类化合物的分离与鉴定[D]. 合肥: 安徽农业大学, 2019. Zhou Y L.Separation and identification of flavoalkaloids from white peony tea [D]. Hefei: Anhui Agricultural University, 2019. [68] Tanaka T, Watarumi S, Fujieda M, et al.New black tea polyphenol having N-ethyl-2-pyrrolidinone moiety derived from tea amino acid theanine: isolation, characterization and partial synthesis[J]. Food Chemistry, 2004, 93(1): 81-87. [69] 顾小盼, 吴臻, 靳凤玉, 等. 普洱茶素Ⅰ改善糖脂代谢紊乱的药效评价及作用机制研究[J]. 中国中药杂志, 2018, 43(11): 2339-2344. Gu X P, Wu Z, Jin F Y, et al.Efficacy and mechanism of puerinⅠin improving disorder of glycolipid metabolism in ApoE-/- mice[J]. China journal of Chinese Materia Medica, 2018, 43(11): 2339-2344. [70] Cheng J, Wu F H, Wang P, et al.Flavoalkaloids with pyrrolidinone ring from Chinese ancient cultivated tea Xi-Gui[J]. Journal of Agricultural and Food Chemistry, 2018, 66(30): 7948-7957. [71] 李逍. 白牡丹茶中黄烷醇生物碱及其抑制晚期糖基化终末产物形成的研究[D]. 合肥: 安徽农业大学, 2018. Li X.Novel flavoalkaloids from Bai-Mudan tea with inhibitoryactivity against formation of advanced glycation end products [D]. Hefei: Anhui Agricultural University, 2018. [72] Nangaku M, Miyata T, Sada T, et al.Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model[J]. Journal of the American Society of Nephrology, 2003, 14(5): 1212-1222. [73] Wang W N, Zhang L, Wang S, et al.8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity[J]. Food Chemistry, 2014, 152: 539-545. doi: 10.1016/j.foodchem.2013.10.117. [74] 王鑫玉, 赵一慕, 高云, 等. 普洱茶素Ⅱ改善高脂血症ApoE-/-小鼠动脉粥样硬化作用机制研究[J]. 中草药, 2023, 54(4): 1157-1163. Wang X Y, Zhao Y M, Gao Y, et al.Mechanism of puerinⅡon improving atherosclerosis in ApoE-/- mice with hyperlipidemia[J]. Chinese Traditional and Herbal Drugs, 2023, 54(4): 1157-1163. [75] Gu X P, Meng Y X, Jin F Y, et al.Puerin III alleviates glucose and lipid metabolism disorders in high-fat high-sucrose diet-induced hyperlipidemic and hyperglycemic ApoE-/- mice[J]. Journal of Functional Foods, 2022, 93: 105085. doi: 10.1016/j.jff.2022.105085. [76] 杨锐, 赵兴平, 何明婕, 等. 普洱茶素Ⅴ~Ⅶ对4种乳腺癌细胞作用研究[J]. 茶叶科学, 2024, 44(3): 501-514. Yang R, Zhao X P, He M J, et al.Study on the effects of Puerins Ⅴ-Ⅶ on four kinds of breast cancer cells[J]. Journal of Tea Science, 2024, 44(3): 501-514. [77] Li N, Zhu H T, Wang D, et al.New flavoalkaloids with potent α-glucosidase and acetylcholinesterase inhibitory activities from Yunnan black tea ‘Jin-Ya'[J]. Journal of Agricultural and Food Chemistry, 2020, 68(30): 7955-7963. [78] 周阳, 袁长彬, 龚志华, 等. 六大茶类抑制α-淀粉酶和胰蛋白酶的效果比较[J]. 湖南农业大学学报(自然科学版), 2018, 44(1): 51-55. Zhou Y, Yuan C B, Gong Z H, et al.Comparison of inhibitory effects of six kinds of tea on α-amylase and trypsin[J]. Journal of Hunan Agricultural University (Natural Sciences), 2018, 44(1): 51-55. [79] 葛斌, 谢梅林, 顾振纶, 等. AMPK作为治疗2型糖尿病新靶点的研究进展[J]. 中国药理学通报, 2008(5): 580-583. Ge B, Xie M L, Gu Z L, et al.Progress in AMPK as a novel target for type 2 diabetes[J]. Chinese Pharmacological Bulle, 2008(5): 580-583. [80] 古虹, 李俊辉, 庞茗月, 等. 吲哚类生物碱的生物活性研究进展[J]. 现代医药卫生, 2025, 41(1): 181-186. Gu H, Li J H, Pang M Y, et al.Research progress on biological activity of indole alkaloid[J]. Journal of Modern Medicine & Health, 2025, 41(1): 181-186. [81] Zou X, Li Y, Zhang X, et al.A new prenylated indole diketopiperazine alkaloid from Eurotium cristatum[J]. Molecules, 2014, 19(11): 17839-17847. [82] 刘丽萍, 唐雨薇, 王若娴, 等. 茯茶冠突散囊菌发酵生产吲哚生物碱的研究[J]. 茶叶科学, 2017, 37(5): 503-512. Liu L P, Tang Y W, Wang R X, et al.Production of bioactive indole alkaloids through fermention of Eurotium cristatum from Fuzhuan tea[J]. Journal of Tea Science, 2017, 37(5): 503-512. [83] Javad R S, Amit B, Praveen D, et al.Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities[J]. Frontiers in Nutrition, 2021(8): 664197. doi: 10.3389/fnut.2021.664197. [84] Ryuta Y, Mikiharu D.Isolation of an antioxidative substance produced by aspergillus repens[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(5): 932-933. [85] Li Y, Li X F, Kim S K, et al.Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillussp[J]. Chemistry Pharm Bull (Tokyo), 2004, 52(3): 375-376. [86] Sachie S H, Maho H, Yuki N, et al.Neoechinulin A induced memory improvements and antidepressant-like effects in mice[J]. Progress in Neuropsychopharmacology & Biological Psychiatry, 2016, 71: 155-161. doi: 10.1016/j.pnpbp.2016.08.002. [87] Colm C, David J S.Malaise in the water maze: Untangling the effects of LPS and IL-1β on learning and memory[J]. Brain Behavior and Immunity, 2008, 22(8): 1117-1127. [88] Kyoung S K, Xiang C, Dong S L, et al.Anti-inflammatory effect of neoechinulin A from the marine fungus eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages[J]. Molecules, 2013, 18(11): 13245-13259. [89] Pradeep D, Li Y X, Himaya S W A, et al. Neoechinulin A suppresses amyloid-β oligomer-induced microglia activation and thereby protects PC-12 cells from inflammation-mediated toxicity[J]. Neurotoxicology, 2013, 35: 30-40. doi: 10.1016/j.neuro.2012.12.004. [90] Get rights and content [91] Isuru W, Li Y X, Thanh S V, et al.Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp[J]. Process Biochemistry, 2013, 48(1): 68-72. [92] Kajimura Y, Aoki T, Kuramochi K, et al.Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity[J]. The Journal of Antibiotics, 2008, 61(5): 330-333. [93] Kiyotoshi M, Takashi O, Kenji Y, et al.Protective properties of neoechinulin a against SIN-1-induced neuronal cell death[J]. The Journal of Biochemistry, 2004, 136(1): 81-87. [94] Richardson J R, Caudle W M, Guillot T S, et al.Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)[J]. Toxicological Sciences, 2007, 95(1): 196-204. [95] Huie R E, Padmaja S.The reaction of no with superoxide[J]. Free Radical Research Communications, 2009, 18(4): 195-199. [96] Trackey J L, Uliasz T F, Hewett S J.SIN-1-induced cytotoxicity in mixed cortical cell culture: peroxynitrite-dependent and -independent induction of excitotoxic cell death[J]. Journal of Neurochemistry, 2010, 79(2): 445-455. [97] Kamisuki S, Himeno N, Tsurukawa Y, et al.Identification of proteins that bind to the neuroprotective agent neoechinulin A[J]. Bioscience, Biotechnology, and Biochemistry, 2018, 82(3): 442-448. [98] 折改梅, 陈可可, 张颖君, 等. 8-氧化咖啡因和嘧啶类生物碱在普洱熟茶中的存在[J]. 云南植物研究, 2007, 29(6): 713-716. Zhe G M, Chen K K, Zhang Y J, et al.The occurrence of 8-oxocaffeine and pyrimidine alkaloids in Pu-er ripe tea[J]. Acta Botanica Yunnanica, 2007, 29(6): 713-716. |
[1] | 张凯丽, 李湘. 青砖茶感官特性与生理活性研究进展[J]. 茶叶科学, 2025, 45(3): 361-378. |
[2] | 叶水心, 王伟伟, 张梦雪, 江和源, 张海华. 高效液相色谱法检测茶叶中花青素类物质含量[J]. 茶叶科学, 2025, 45(3): 454-464. |
[3] | 朱绍辉, 赵文举, 马博慧, 杨化林, 邓芳. 基于深度迁移学习的小样本茶叶嫩芽识别[J]. 茶叶科学, 2025, 45(3): 522-534. |
[4] | 晏朵, 余鹏辉, 龚雨顺. 萎凋过程中环境胁迫对茶叶品质影响研究进展[J]. 茶叶科学, 2025, 45(1): 1-14. |
[5] | 马雪晴, 吴华伟, 曹春霞, 郑娇莉. 茶园根际解磷菌的筛选及其对茶叶产量、品质及土壤性质的影响[J]. 茶叶科学, 2025, 45(1): 110-120. |
[6] | 赵建诚, 倪惠菁, 王波, 蔡春菊, 杨振亚. 毛竹立竹密度对林下茶树生理生长和茶叶品质的影响[J]. 茶叶科学, 2024, 44(6): 928-940. |
[7] | 许文琪. 微波消解-电感耦合等离子体质谱(ICP-MS)法准确测定茶叶中总硒含量[J]. 茶叶科学, 2024, 44(6): 1014-1022. |
[8] | 徐晴晴, 聂晴, 刘助生, 郭青, 刘仲华, 蔡淑娴. 康普茶细菌纤维素的形成途径及其在废弃茶叶资源高效利用中的应用[J]. 茶叶科学, 2024, 44(5): 707-717. |
[9] | 侯智炜, 吕永铭, 马宽, 张汇源, 顾哲, 张然, 李乐, 金俞谷, 苏祝成, 陈红平. 不同茶树品种的径山茶挥发性成分差异研究[J]. 茶叶科学, 2024, 44(5): 747-762. |
[10] | 姚蕾珺, 陈燕秋, 林浩, 汪璐瑶, 石培育, 张阳阳, 黄婷, 宋娟, 王义, 戴琴, 刘川. 一体化QuEChERS净化-超高效液相色谱-串联质谱法测定茶叶中27种吡咯里西啶类生物碱[J]. 茶叶科学, 2024, 44(5): 831-842. |
[11] | 李文燕, 张琳, 陈利燕, 张颖彬, 周苏娟, 洪一苇, 梁思辰, 孙洪峰, 陈红平. 我国茶叶产品质量标准中理化指标差异性分析[J]. 茶叶科学, 2024, 44(5): 843-852. |
[12] | 张怡, 胡林英, 伊晓云, 陈富桥, 姜爱芹. 新式茶饮消费对传统茶消费意愿的反哺效应分析[J]. 茶叶科学, 2024, 44(5): 853-868. |
[13] | 甘芳瑗, 刘振平, 傅丙生, 龙道崎, 庞钶靖, 姜容. 气相色谱-离子迁移谱技术在茶叶领域应用的研究进展[J]. 茶叶科学, 2024, 44(4): 565-574. |
[14] | 杜茜雅, 刘馨秋, 卢勇. 长江流域茶叶产地历史变迁及其影响因素[J]. 茶叶科学, 2024, 44(4): 694-706. |
[15] | 胡月, 宁亚婷, 黎洪霞, 罗逢健, 尹荣秀, 张新忠. 茶叶中手性农药残留分析与风险评估研究进展[J]. 茶叶科学, 2024, 44(3): 363-385. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|