[1] 林少和. 茶尺蠖的发生规律及防治方法[J]. 福建农业科技, 2003(1): 52-53. Lin S H.Occurrence regularity and control methods of Ectropis oblique[J]. Fujian Agricultural Science and Technology, 2003(1): 52-53. [2] 张帅琪, 冯博文, 张婧, 等. 灰茶尺蠖和茶尺蠖绿色防控技术研究进展[J]. 环境昆虫学报, 2020, 42(5): 1121-1138. Zhang S Q, Feng B W, Zhang J, et al.Research progress on green control techniques of Ectropis grisescens Warren and Ectropis obliqua Prout[J]. Journal of Environment Entomology, 2020, 42(5): 1121-1138. [3] 陈慧. 灰茶尺蠖和茶尺蠖爆发原因及绿色防控措施—以安徽六安为例[J]. 茶业通报, 2020, 42(4): 155-157. Chen H.The causes of the outbreak of Ectropis grisescens and Ectropis obliqua with the green prevention and control measures: taking Lu'an, Anhui Province as an example[J]. Journal of Tea Business, 2020, 42(4): 155-157. [4] 陈雨思, 周孝贵, 曾维健, 等. 不同茶园灰茶尺蠖和茶尺蠖对5种杀虫剂的抗药性监测[J]. 环境昆虫学报, 2023, 45(4): 1103-1110. Chen Y S, Zhou X G, Zeng W J, et al.Resistance monitoring of two tea geometrid moths (Ectropis obliqua and E. grisescens) to five frequently used insecticides in different tea plantations[J]. Journal of Environment Entomology, 2023, 45(4): 1103-1110. [5] 蔡晓明, 边磊, 罗宗秀, 等. 2023年茶树病虫害防控研究进展[J]. 中国茶叶, 2024, 46(10): 1-7. Cai X M, Bian L, Luo Z X, et al.Research progress of tea pest control in 2023[J]. China Tea, 2024, 46(10): 1-7. [6] 谭荣荣, 陈勋, 黄丹娟, 等. 灰茶尺蠖核型多角体病毒对两种尺蠖的致病性[J]. 中国生物防治学报, 2023, 39(3): 684-689. Tan R R, Chen X, Huang D J, et al.Pathogenicity of Ectropis grisescens nucleopolyhedrovirus on Ectropis grisescens Warren and Ectropis obliqua Prout[J]. Chinese Journal of Biological Control, 2023, 39(3): 684-689. [7] 殷坤山, 陈华才, 肖强, 等. 茶尺蠖核型多角体病毒制剂的试制与推广应用[J]. 中国病毒学, 2000(s1): 84-87. Yin K S, Chen H C, Xiao Q, et al.Widespreading and application of Ectropic obliqua nuclear polyhedrosis virus(EoNPV) preparations[J]. Virologica Sinica, 2000(s1): 84-87. [8] 吴培华, 王护民, 张启嫒, 等. 茶尺蠖核型多角体病毒急性毒性和致病性研究[J]. 公共卫生与预防医学, 2004(5): 66-67. Wu P H, Wang H M, Zhang Q Y, et al.Study on acute toxicity and pathogenicity of Ectropic obliqua nuclear polyhedrosis virus(EoNPV)[J]. Journal of Public Health and Preventive Medicine, 2004(5): 66-67. [9] 龚自明, 刘明炎, 谭荣荣, 等. 灰茶尺蠖核型多角体病毒(EgNPV)安全性试验[J]. 茶叶科学, 2010, 30(1): 13-18. Gong Z M, Liu M Y, Tan R R, et al.Experiment on safety of Ectropis grisescens nucleopolyhedrovirus (EgNPV)[J]. Journal of Tea Science, 2010, 30(1): 13-18. [10] 唐美君, 李天娇, 郭华伟, 等. 茶尺蠖病毒制剂的应用效果初探与推广概况[J]. 中国植保导刊, 2021, 41(6): 78-80. Tang M J, Li T J, Guo H W, et al.First study on the control effect and promotion of tea geometrid virus preparation[J]. China Plant Protection, 2021, 41(6): 78-80. [11] 周子燕, 胡本进, 徐丽娜, 等. 防治茶树茶尺蠖的药剂筛选[J]. 安徽农业科学, 2016, 44(15): 150-151. Zhou Z Y, Hu B J, Xu L N, et al.Screening of agents for the control of Ectropis obliqua hypulina wehrli in tea tree[J]. Journal of Anhui Agricultural Sciences, 2016, 44(15): 150-151. [12] 胡曙光. 几种药剂防治茶尺蠖的药效比较[J]. 蚕桑茶叶通讯, 2003(3): 9-10. Hu S G.Control efficacy of several pesticides against Ectropis obliqua[J]. Newsletter of Sericulture and Tea, 2003(3): 9-10. [13] Uchibori-Asano M, Uchiyama T, Jouraku A, et al.Tebufenozide resistance in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae): establishment of a molecular diagnostic method based on EcR mutation and its application for field-monitoring[J]. Applied Entomology and Zoology, 2019, 54: 223-230. doi: 10.1007/s13355-019-00616-2. [14] Uchibori-Asano M, Uchiyama T, Jouraku A, et al.Development of allele-specific loopmediated isothermal amplification (AS-LAMP) to detect the tebufenozide-resistant allele in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae)[J]. Applied Entomology and Zoology, 2022, 57: 93-99. doi: 10.1007/s13355-021-00756-4. [15] Uchiyama T, Ozawa A.Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), in the tea fields of Shizuoka Prefecture, Japan[J]. Applied Entomology and Zoology, 2014, 49: 529-534. doi: 10.1007/s13355-014-0283-x. [16] Chen Z M, Zhou L, Yang M, et al.Index design and safety evaluation of pesticides application based on a fuzzy AHP model for beverage crops: tea as a case study[J]. Pest Management Science, 2020, 76(2): 520-526. [17] 施颖红, 唐玉英, 吴珏, 等. 溴虫氟苯双酰胺对上海地区乌塌菜主要害虫的田间药效[J]. 中国植保导刊, 2025, 45(2): 83-85. Shi Y H, Tang Y Y, Wu J, et al.Field efficacy of brominated flubendiamide against main pests of savoy in Shanghai[J]. China Plant Protection, 2025, 45(2): 83-85. [18] 阿卜力孜·塔伊尔, 马召, 帕提玛·乌木尔汗, 等. 不同杀虫剂对番茄潜叶蛾的毒力及田间药效[J]. 生物安全学报(中英文), 2024, 33(4): 375-380. Abulizi·T, Ma Z, Patima·W, et al. Toxicity and field efficacy of different insecticides against Tuta absoluta[J]. Journal of Biosafety, 2024, 33(4): 375-380. [19] 华乃震. 绿色环保生物杀虫剂多杀霉素和乙基多杀菌素的述评[J]. 农药, 2015, 54(1): 1-5, 13. Hua N Z.A review of green biological insecticide spinosad and spinetoram[J]. Agrochemicals, 2015, 54(1): 1-5, 13. [20] 高祖鹏, 郭井菲, 何康来, 等. 乙基多杀菌素对草地贪夜蛾幼虫的毒力及对其解毒酶和乙酰胆碱酯酶活性的影响[J]. 昆虫学报, 2020, 63(5): 558-564. Gao Z P, Guo J F, He K L, et al.Toxicity of spinetoram and its effects on the detoxifying enzyme and acetyl cholinesterase activities in Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae[J]. Acta Entomologica Sinica, 2020, 63(5): 558-564. [21] Wei J Z, Zhang L L, Yang S, et al.Assessment of the lethal and sublethal effects by spinetoram on cotton bollworm[J]. PLoS One, 2018, 13(9): e0204154. doi: 10.1371/journal.pone.0204154. [22] 刘伟, 王海迎, 杜磊, 等. 多杀霉素和甲氨基阿维菌素苯甲酸盐对小菜蛾的室内生测及田间药效评价[J]. 农药科学与管理, 2009, 30(9): 58-60. Liu W, Wang H Y, Du L, et al.Toxicity tests of spinosad and emamectin benzoate on Plutella xylostella Linne[J]. Pesticide Science and Administration, 2009, 30(9): 58-60. [23] 薛元海, 王为银, 潘守成, 等. 菜喜防治水稻害虫试验初报[J]. 现代农药, 2002(3): 37-38. Xue Y H, Wang W Y, Pan S C, et al.Preliminary report on trial of spinosad against rice pests[J]. Modern Agrochemicals, 2002(3): 37-38. [24] 王天玉, 林媚, 姚周麟, 等. 乙基多杀菌素在杨梅果实和土壤中的残留消解特征及其安全性评价[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 43-51. Wang T Y, Lin M, Yao Z L, et al.Dissipation characteristics and safety evaluation of spinetoram in red bayberry and soil[J]. Journal of Zhejiang University (Agriculture and Life Science), 2021, 47(1): 43-51. [25] 何灿. 多杀菌素和甲维盐在豇豆上的残留及降解动态[D]. 广州: 华南农业大学, 2017. He C.Residues and dissipation dynamic of spinosad and emamectin benzoate in cowpea [D]. Guangzhou: South China Agricultural University, 2017. [26] 张凯, 徐元媛, 高尚, 等. 生物农药乙基多杀菌素的研究进展[J]. 现代农药, 2024, 23(2): 39-44. Zhang K, Xu Y Y, Gao S, et al.Research progress of biological pesticide spinetoram[J]. Modern Agrochemicals, 2024, 23(2): 39-44. [27] 殷霄, 谢植伟, 宋向荣, 等. 多杀霉素原药毒性[C]//中国毒理学会, 广东省疾病预防控制中心. 中国毒理学会第六届全国毒理学大会论文摘要. 北京: 中国药理学与毒理学杂志编辑部, 2013. Yin X, Xie Z W, Song X R, et al.Toxicity of the original drug of spinomycin[C]//Chinese Toxicology Society, Guangdong Provincial Center for Disease Control and Prevention. Abstracts of the 6th National Toxicology Congress of the Chinese Toxicology Society. Beijing: Editorial Department of Chinese Journal of Pharmacology and Toxicology, 2013. [28] Biondi A, Mommaerts V, Smagghe G, et al.The non-target impact of spinosyns on beneficial arthropods[J]. Pest Management Science, 2012, 68(12): 1523-1536. [29] Santos V S V, Pereira B B. Properties, toxicity and current applications of the biolarvicide spinosad[J]. Journal of Toxicology and Environmental Health: Part B, Critical Reviews, 2020, 23(1): 13-26. [30] 杨广明, 郅军锐, 李顺欣, 等. 乙基多杀菌素和印楝素对西花蓟马生长发育及繁殖的亚致死效应[J]. 应用生态学报, 2016, 27(11): 3698-3704. Yang G M, Zhi J R, Li S X, et al.Sublethal effects of spinetoram and azadirachtin on development and reproduction of Frankliniella occidentalis (Pergande)[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3698-3704. [31] 李定银, 郅军锐, 张涛, 等. 乙基多杀菌素多代胁迫对西花蓟马解毒酶活性、发育和繁殖的影响[J]. 昆虫学报, 2021, 64(10): 1176-1186. Li D Y, Zhi J R, Zhang T, et al.Effects of multigenerational spinetoram stress on the detoxification enzyme activities, development and reproduction of Frankliniella occidentalis (Thysanoptera: Thripidae)[J]. Acta Entomologica Sinica, 2021, 64(10): 1176-1186. |